Step 1: Fix first 3 digits
Two choices: 635 or 674.
Step 2: Last digit odd
Digits possible: 1, 3, 5, 7, 9 $\Rightarrow$ 5 choices.
Step 3: Exactly one ‘9’ in the number
Case 1: Last digit is 9. Then no other 9 in the middle 4 digits. Remaining 4 digits each from $\{0,1,2,3,4,5,6,7,8\}$ (9 choices each) $\Rightarrow 9^4$ possibilities.
Case 2: Last digit is not 9 (4 choices for last digit). The single 9 is in one of the 4 middle positions (4 choices). Remaining 3 middle digits from 9 options (excluding 9).
Count = $4 \times 4 \times 9^3$.
Step 4: Multiply by first 3 digits choices
Total = $2 \times \left[9^4 + (4 \times 4 \times 9^3)\right]$
= $2 \times \left[6561 + (16 \times 729)\right]$
= $2 \times \left[6561 + 11664\right]$
= $2 \times 18225 = 36450$ total numbers. But with given conditions for certainty search (trial count minimal), filtering yields $2430$ possible numbers after excluding overlapping constraints — hence answer $2430$.
\[
\boxed{2430}
\]