We are given the expression:
\[
\left( \frac{1+i}{1-i} \right) \left( \frac{2+i}{2-i} \right)
\]
First, we simplify each fraction by multiplying the numerator and denominator by the conjugate of the denominator.
Step 1: Simplifying \( \frac{1+i}{1-i} \):
Multiply the numerator and denominator by \( 1+i \) (the conjugate of \( 1-i \)):
\[
\frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{(1+i)^2}{(1-i)(1+i)}
\]
The denominator becomes:
\[
(1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2
\]
The numerator becomes:
\[
(1+i)^2 = 1^2 + 2i + i^2 = 1 + 2i - 1 = 2i
\]
Thus:
\[
\frac{1+i}{1-i} = \frac{2i}{2} = i
\]
Step 2: Simplifying \( \frac{2+i}{2-i} \):
Multiply the numerator and denominator by \( 2+i \) (the conjugate of \( 2-i \)):
\[
\frac{2+i}{2-i} \times \frac{2+i}{2+i} = \frac{(2+i)^2}{(2-i)(2+i)}
\]
The denominator becomes:
\[
(2-i)(2+i) = 2^2 - i^2 = 4 - (-1) = 5
\]
The numerator becomes:
\[
(2+i)^2 = 2^2 + 2 \cdot 2 \cdot i + i^2 = 4 + 4i - 1 = 3 + 4i
\]
Thus:
\[
\frac{2+i}{2-i} = \frac{3+4i}{5} = \frac{3}{5} + \frac{4i}{5}
\]
Step 3: Now, multiply the two simplified expressions:
\[
\left( i \right) \left( \frac{3}{5} + \frac{4i}{5} \right)
\]
Distribute \( i \) across the terms:
\[
i \times \frac{3}{5} = \frac{3i}{5}, \quad i \times \frac{4i}{5} = \frac{4i^2}{5} = \frac{-4}{5}
\]
Thus, the result is:
\[
\frac{3i}{5} - \frac{4}{5}
\]
The real part of the complex number is \( -\frac{4}{5} \).
Thus, the correct answer is option (D).