Question:

Real part of (1+i1i)(2+i2i) \left( \frac{1+i}{1-i} \right) \left( \frac{2+i}{2-i} \right) is:

Show Hint

When simplifying expressions with complex numbers, remember to multiply by the conjugate of the denominator. This will eliminate the imaginary part from the denominator, making the expression easier to handle.
Updated On: Mar 11, 2025
  • 35 \frac{3}{5}
  • 35 -\frac{3}{5}
  • 45 \frac{4}{5}
  • 45 -\frac{4}{5}
  • 15 -\frac{1}{5}
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

We are given the expression: (1+i1i)(2+i2i) \left( \frac{1+i}{1-i} \right) \left( \frac{2+i}{2-i} \right) First, we simplify each fraction by multiplying the numerator and denominator by the conjugate of the denominator.
Step 1: Simplifying 1+i1i \frac{1+i}{1-i} :
Multiply the numerator and denominator by 1+i 1+i (the conjugate of 1i 1-i ): 1+i1i×1+i1+i=(1+i)2(1i)(1+i) \frac{1+i}{1-i} \times \frac{1+i}{1+i} = \frac{(1+i)^2}{(1-i)(1+i)} The denominator becomes: (1i)(1+i)=12i2=1(1)=2 (1-i)(1+i) = 1^2 - i^2 = 1 - (-1) = 2 The numerator becomes: (1+i)2=12+2i+i2=1+2i1=2i (1+i)^2 = 1^2 + 2i + i^2 = 1 + 2i - 1 = 2i Thus: 1+i1i=2i2=i \frac{1+i}{1-i} = \frac{2i}{2} = i Step 2: Simplifying 2+i2i \frac{2+i}{2-i} :
Multiply the numerator and denominator by 2+i 2+i (the conjugate of 2i 2-i ): 2+i2i×2+i2+i=(2+i)2(2i)(2+i) \frac{2+i}{2-i} \times \frac{2+i}{2+i} = \frac{(2+i)^2}{(2-i)(2+i)} The denominator becomes: (2i)(2+i)=22i2=4(1)=5 (2-i)(2+i) = 2^2 - i^2 = 4 - (-1) = 5 The numerator becomes: (2+i)2=22+22i+i2=4+4i1=3+4i (2+i)^2 = 2^2 + 2 \cdot 2 \cdot i + i^2 = 4 + 4i - 1 = 3 + 4i Thus: 2+i2i=3+4i5=35+4i5 \frac{2+i}{2-i} = \frac{3+4i}{5} = \frac{3}{5} + \frac{4i}{5} Step 3: Now, multiply the two simplified expressions: (i)(35+4i5) \left( i \right) \left( \frac{3}{5} + \frac{4i}{5} \right) Distribute i i across the terms: i×35=3i5,i×4i5=4i25=45 i \times \frac{3}{5} = \frac{3i}{5}, \quad i \times \frac{4i}{5} = \frac{4i^2}{5} = \frac{-4}{5} Thus, the result is: 3i545 \frac{3i}{5} - \frac{4}{5}
The real part of the complex number is 45 -\frac{4}{5} .
Thus, the correct answer is option (D).
Was this answer helpful?
0
0