\(\frac{\sqrt8}{\Pi}\)
\(\sqrt{\frac{8}{3}}\)
The correct answer is (B): \(\sqrt{\frac{8}{3}}\)
The motion of a particle in the XY plane is given by \( x(t) = 25 + 6t^2 \, \text{m} \); \( y(t) = -50 - 20t + 8t^2 \, \text{m} \). The magnitude of the initial velocity of the particle, \( v_0 \), is given by:
Let A be a 3 × 3 matrix such that \(\text{det}(A) = 5\). If \(\text{det}(3 \, \text{adj}(2A)) = 2^{\alpha \cdot 3^{\beta} \cdot 5^{\gamma}}\), then \( (\alpha + \beta + \gamma) \) is equal to: