Step 1: Identify the relevant frequency.
The maximum kinetic energy of photoelectrons depends on the highest frequency of incident radiation.
Thus, we use:
\[
\nu_{\max} = 9 \times 10^{14}\,\text{Hz}.
\]
Step 2: Write the photoelectric equation.
\[
K_{\max} = h\nu - \phi,
\]
where \(h = 4.14 \times 10^{-15}\,\text{eV·s}\) and \(\phi = 2.5\,\text{eV}\).
Step 3: Calculate the photon energy.
\[
E = h\nu = (4.14 \times 10^{-15})(9 \times 10^{14})
= 3.73\,\text{eV}.
\]
Step 4: Calculate maximum kinetic energy.
\[
K_{\max} = 3.73 - 2.5 = 1.23\,\text{eV}.
\]
Step 5: Final answer (nearest suitable value).
\[
\boxed{K_{\max} \approx 1.2\,\text{eV}}.
\]