Step 1: Check transitivity. If \( (a, b) \in R \) and \( (b, c) \in R \), then \( a = b^2 \) and \( b = c^2 \).
Step 2: Check if \( (a, c) \in R \). \[ a = (c^2)^2 = c^4 \] Since \( a \neq c^2 \), transitivity does not hold. Example: Take \( a = 16, b = 4, c = 2 \). \[ (16,4) \in R \text{ and } (4,2) \in R \] But \( (16,2) \notin R \), hence not transitive.
Let $ A = \{-2, -1, 0, 1, 2, 3\} $. Let $ R $ be a relation on $ A $ defined by $ (x, y) \in R $ if and only if $ |x| \le |y| $. Let $ m $ be the number of reflexive elements in $ R $ and $ n $ be the minimum number of elements required to be added in $ R $ to make it reflexive and symmetric relations, respectively. Then $ l + m + n $ is equal to
If the domain of the function $ f(x) = \log_7(1 - \log_4(x^2 - 9x + 18)) $ is $ (\alpha, \beta) \cup (\gamma, \delta) $, then $ \alpha + \beta + \gamma + \delta $ is equal to
Let A = $\{-3,-2,-1,0,1,2,3\}$. Let R be a relation on A defined by xRy if and only if $ 0 \le x^2 + 2y \le 4 $. Let $ l $ be the number of elements in R and m be the minimum number of elements required to be added in R to make it a reflexive relation. then $ l + m $ is equal to
Translate the following passage into English: to be translated
Translate the following into English:
Translate the following passage into English: