Step 1: Check transitivity. If \( (a, b) \in R \) and \( (b, c) \in R \), then \( a = b^2 \) and \( b = c^2 \).
Step 2: Check if \( (a, c) \in R \). \[ a = (c^2)^2 = c^4 \] Since \( a \neq c^2 \), transitivity does not hold. Example: Take \( a = 16, b = 4, c = 2 \). \[ (16,4) \in R \text{ and } (4,2) \in R \] But \( (16,2) \notin R \), hence not transitive.
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:
Statement 1: Total number of elements in $ R_1 $ is 18.
Statement 2: $ R $ is symmetric but not reflexive and transitive.
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $