\(\text{(cosec A - sin A)(sec A - cos A)} = \frac{1}{\text{(tan A + cot A)}}\)
L.H.S =\(\text{ (cosec A - sin A)(sec A - cos A)}\)
\(⇒ (\frac{1}{\text{sin A }}-\text{ sin A)}(\frac{1}{\text{cos A }}- \text{cos A})\)
\(= \frac{\text{(1 - sin² A)}}{\text{sin A }}×\frac{\text{ (1 - cos² A)}}{\text{cos A}}\)
\(= \frac{\text{cos² A sin² A}}{\text{sin A cos A}}\)
\(= \frac{\text{sin A cos A}}{1}\)
\(=\frac{\text{ sin A cos A}}{\text{(sin² A + cos² A) }}\) [(sin² A + cos² A) = 1]
\(= \frac{1}{\text{sin² A + cos² A}}\)
\(=\frac{ 1}{ [(\frac{\text{sin² A}}{\text{sin A cos A}}) + (\frac{\text{cos² A}}{\text{sin A cos A}})]}\) [ By dividing numerator and denominator by (sin A cos A)]
\(= \frac{1}{[(\frac{\text{sin A}}{\text{cos A}}) + (\frac{\text{cos A}}{\text{sin A}})]}\)
\(= \frac{1}{\text{(tan A + cot A)}}\)
= RHS
The value of \(\dfrac{\sqrt{3}\cosec 20^\circ - \sec 20^\circ}{\cos 20^\circ \cos 40^\circ \cos 60^\circ \cos 80^\circ}\) is equal to
If $\cot x=\dfrac{5}{12}$ for some $x\in(\pi,\tfrac{3\pi}{2})$, then \[ \sin 7x\left(\cos \frac{13x}{2}+\sin \frac{13x}{2}\right) +\cos 7x\left(\cos \frac{13x}{2}-\sin \frac{13x}{2}\right) \] is equal to
If \[ \frac{\cos^2 48^\circ - \sin^2 12^\circ}{\sin^2 24^\circ - \sin^2 6^\circ} = \frac{\alpha + \beta\sqrt{5}}{2}, \] where \( \alpha, \beta \in \mathbb{N} \), then the value of \( \alpha + \beta \) is ___________.

परंपरागत भोजन को लोकप्रिय कैसे बनाया जा सकता है ?
i. उपलब्ध करवाकर
ii. प्रचार-प्रसार द्वारा
iii. बिक्री की विशेष व्यवस्था करके
iv. घर-घर मुफ्त अभियान चलाकर विकल्प:
The relationship between the sides and angles of a right-angle triangle is described by trigonometry functions, sometimes known as circular functions. These trigonometric functions derive the relationship between the angles and sides of a triangle. In trigonometry, there are three primary functions of sine (sin), cosine (cos), tangent (tan). The other three main functions can be derived from the primary functions as cotangent (cot), secant (sec), and cosecant (cosec).
sin x = a/h
cos x = b/h
tan x = a/b
Tan x can also be represented as sin x/cos x
sec x = 1/cosx = h/b
cosec x = 1/sinx = h/a
cot x = 1/tan x = b/a
