Step 1: Let \[ I = \int_{0}^{\pi} \frac{x\sin x}{1+\cos^2 x}\, dx. \]
Step 2: Use property of definite integrals.
\[
I = \int_{0}^{\pi} f(x)\, dx = \int_{0}^{\pi} f(\pi-x)\, dx.
\]
Here,
\[
f(x) = \frac{x\sin x}{1+\cos^2 x}.
\]
So,
\[
f(\pi-x) = \frac{(\pi-x)\sin(\pi-x)}{1+\cos^2(\pi-x)}.
\]
Since $\sin(\pi-x)=\sin x$, $\cos(\pi-x)=-\cos x$ and $\cos^2(\pi-x)=\cos^2 x$:
\[
f(\pi-x) = \frac{(\pi-x)\sin x}{1+\cos^2 x}.
\]
Step 3: Add $I+I$.
\[
2I = \int_{0}^{\pi} \left[ \frac{x\sin x}{1+\cos^2 x} + \frac{(\pi-x)\sin x}{1+\cos^2 x} \right] dx.
\]
\[
2I = \int_{0}^{\pi} \frac{\pi\sin x}{1+\cos^2 x} \, dx.
\]
\[
I = \frac{\pi}{2} \int_{0}^{\pi} \frac{\sin x}{1+\cos^2 x} \, dx.
\]
Step 4: Substitute $u=\cos x$.
\[
du = -\sin x \, dx.
\]
When $x=0 $\Rightarrow$ u=1$,
when $x=\pi $\Rightarrow$ u=-1$.
So,
\[
I = \frac{\pi}{2}\int_{1}^{-1} \frac{-du}{1+u^2}.
\]
\[
I = \frac{\pi}{2}\int_{-1}^{1} \frac{du}{1+u^2}.
\]
\[
I = \frac{\pi}{2}\left[\tan^{-1}u\right]_{-1}^{1}.
\]
\[
I = \frac{\pi}{2}\left(\tan^{-1}(1) - \tan^{-1}(-1)\right).
\]
\[
I = \frac{\pi}{2}\left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right).
\]
\[
I = \frac{\pi}{2}\cdot \frac{\pi}{2} = \frac{\pi^2}{4}.
\]
Final Answer: \[ \boxed{\frac{\pi^2}{4}} \]
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below:
Match List-I with List-II
List-I (Definite integral) | List-II (Value) |
---|---|
(A) \( \int_{0}^{1} \frac{2x}{1+x^2}\, dx \) | (I) 2 |
(B) \( \int_{-1}^{1} \sin^3x \cos^4x\, dx \) | (II) \(\log_e\!\left(\tfrac{3}{2}\right)\) |
(C) \( \int_{0}^{\pi} \sin x\, dx \) | (III) \(\log_e 2\) |
(D) \( \int_{2}^{3} \frac{2}{x^2 - 1}\, dx \) | (IV) 0 |
Choose the correct answer from the options given below: