Let:
\[
\alpha = \cot^{-1} 3, \quad \beta = \cot^{-1} 2
\]
Recall the formula for sum of inverse cotangents:
\[
\cot^{-1} x + \cot^{-1} y = \cot^{-1} \left(\frac{xy - 1}{x + y}\right), \quad \text{if } xy>1.
\]
Calculate:
\[
\alpha + \beta = \cot^{-1} 3 + \cot^{-1} 2 = \cot^{-1} \left(\frac{3 \times 2 - 1}{3 + 2}\right) = \cot^{-1} \left(\frac{6 - 1}{5}\right) = \cot^{-1} \left(\frac{5}{5}\right) = \cot^{-1} 1
\]
We know:
\[
\cot^{-1} 1 = \frac{\pi}{4}.
\]
Therefore:
\[
4(\cot^{-1} 3 + \cot^{-1} 2) = 4 \times \frac{\pi}{4} = \pi.
\]