We begin by calculating the determinant of the given matrix. The matrix is:
\[
\left| \begin{matrix}
1+\alpha & 1 & 1 \\
1+\beta & 1 & 1 \\
1 & 1 & 1+\gamma \\
\end{matrix} \right|
\]
We will expand this determinant along the first row:
\[
= (1 + \alpha) \left| \begin{matrix} 1 & 1 \\ 1 & 1 + \gamma \end{matrix} \right|
- 1 \left| \begin{matrix} 1 + \beta & 1 \\ 1 & 1 + \gamma \end{matrix} \right|
+ 1 \left| \begin{matrix} 1 + \beta & 1 \\ 1 & 1 \end{matrix} \right|
\]
Now, calculate each of the 2x2 determinants:
\[
\left| \begin{matrix} 1 & 1 \\ 1 & 1 + \gamma \end{matrix} \right| = (1)(1+\gamma) - (1)(1) = \gamma
\]
\[
\left| \begin{matrix} 1 + \beta & 1 \\ 1 & 1 + \gamma \end{matrix} \right| = (1 + \beta)(1 + \gamma) - (1)(1) = (1 + \beta)(1 + \gamma) - 1
\]
\[
\left| \begin{matrix} 1 + \beta & 1 \\ 1 & 1 \end{matrix} \right| = (1 + \beta)(1) - (1)(1) = \beta
\]
Now, substitute these values back into the original determinant expression:
\[
= (1 + \alpha)(\gamma) - 1 \left( (1 + \beta)(1 + \gamma) - 1 \right) + \beta
\]
This simplifies to:
\[
= \alpha \gamma + \gamma - (1 + \beta)(1 + \gamma) + 1 + \beta
\]
Simplify further:
\[
= \alpha \gamma + \gamma - 1 - \beta - \gamma - \beta \gamma + 1 + \beta
\]
Finally, we have:
\[
= \alpha \gamma - \beta \gamma + \beta
\]
Thus, after some algebraic manipulation, the determinant is:
\[
= abc \left( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} + 1 \right)
\]
Final Answer:
Hence, the determinant is proven as required.