consider\((\frac{\sqrt{1+sinx}+\sqrt{1-sinx}}{\sqrt{1+sinx}-\sqrt{1-sinx}}\)
\(=(\frac{(\sqrt{1+sinx}+\sqrt{1-sinx)^2}}{\sqrt{1+sinx)^2}-\sqrt{1-sinx)^2}}\)
\(=(\frac{(\sqrt{1+sinx}+\sqrt{1-sinx)^2}}{(\sqrt{1+sinx)^2}-\sqrt{1-sinx)^2}}\) ( by rationalizing)
\(=(\frac{1+sinx)+(1-sinx)+2√(1+sin x)(1-sin x)}{1+sinx-1+sin x}\)
=\(2\frac{1+√1-sin^2x)}{2sin x}=\frac{1+cosx}{sin x}\)=\(\frac{2cos^2\frac{x}{2}}{2sin^\frac{x}{2}cos\frac{x}{2}}\)
\(cot\frac{x}{2}\)
=L.H.S=cot-1 \((\frac{√1+sinx+√1-sinx}{√1+sinx-√1-sinx}\) =cot-1 \((cot\frac{x}{2})\)= R.H.S
Considering the principal values of the inverse trigonometric functions, $\sin^{-1} \left( \frac{\sqrt{3}}{2} x + \frac{1}{2} \sqrt{1-x^2} \right)$, $-\frac{1}{2}<x<\frac{1}{\sqrt{2}}$, is equal to
The value of $\int_{-1}^{1} \frac{(1 + \sqrt{|x| - x})e^x + (\sqrt{|x| - x})e^{-x}}{e^x + e^{-x}} \, dx$ is equal to
The equation \[ 2 \cos^{-1} x = \sin^{-1} \left( 2 \sqrt{1 - x^2} \right) \] is valid for all values of \(x\) satisfying:
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: