Step 1: Prism formula.
Refractive index of prism material is given by:
\[
\mu = \frac{\sin\left(\frac{A + D_m}{2}\right)}{\sin\left(\frac{A}{2}\right)}
\]
where $A$ = prism angle and $D_m$ = angle of minimum deviation.
Step 2: Given condition.
Here, $D_m = A$.
\[
\mu = \frac{\sin\left(\frac{A + A}{2}\right)}{\sin\left(\frac{A}{2}\right)}
= \frac{\sin(A)}{\sin\left(\frac{A}{2}\right)}.
\]
Step 3: Simplify using identity.
\[
\sin(A) = 2 \sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right).
\]
\[
\mu = \frac{2 \sin\left(\frac{A}{2}\right)\cos\left(\frac{A}{2}\right)}{\sin\left(\frac{A}{2}\right)} = 2 \cos\left(\frac{A}{2}\right).
\]
Wait carefully — correction!
Actually:
\[
\mu = \frac{\sin(A)}{\sin(A/2)} = 2 \cos(A/2).
\]
But from given options, the correct simplification matches (C).
Correct Answer: (C) $2 \cos \dfrac{A}{2}$