Given:
\begin{itemize}
\item Pipe A fills the tank in 5 hours.
\item Pipe B fills the tank in 6 hours.
\item Pipe C empties the tank in 12 hours.
\end{itemize}
\subsection*{Calculation of Rates}
\begin{align*}
\text{Rate of Pipe A} &= \frac{1}{5} \text{ tank per hour},
\text{Rate of Pipe B} &= \frac{1}{6} \text{ tank per hour},
\text{Rate of Pipe C} &= -\frac{1}{12} \text{ tank per hour}.
\end{align*}
Combined Rate
\begin{align*}
\text{Combined rate} &= \left(\frac{1}{5} + \frac{1}{6} - \frac{1}{12}\right) \text{ tanks per hour}
&= \frac{17}{60} \text{ tanks per hour}.
\end{align*}
Time to Fill the Tank
\begin{align*}
\text{Time to fill the tank} &= \frac{1}{\frac{17}{60}} = \frac{60}{17} \approx 3 \frac{9}{17} \text{ hours}.
\end{align*}
Thus, with all pipes open, the tank will be filled in \(3 \frac{9}{17}\) hours, matching option (a).