Question:

Percentage of free space in body centred cubic (bcc) unit cell is

Updated On: Jul 28, 2022
  • 0.3
  • 0.32
  • 0.34
  • 0.28
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

In bcc unit cell, the number of atoms = 2 Thus, volume of atoms in unit cell $(v)=2\times\frac{4}{3}\pi r^3$ For bcc structure$(r)=\frac{\sqrt{}3}{4}a$ $(V)=2\times\frac{4}{3}\pi\Bigg(\frac{\sqrt{3}}{4}a\Bigg)^3=\frac{\sqrt{3}}{8}\pi a^3$ Volume of unit cell $(V)=a^3$ Percentage of volume occupied by unit cell $=\frac{Volume \, of\, the\, atoms \, in\, unit\, cell}{Volume \, of \,unit\, cell}$ $=\frac{\frac{\sqrt{3}}{8}\pi a^3}{a^3}\times100=\frac{\sqrt{3}}{8}\pi \times 100=68\%$ Hence, the free space in bcc unit cell = 100 -68=32%.
Was this answer helpful?
0
0