In bcc unit cell, the number of atoms = 2
Thus, volume of atoms in unit cell $(v)=2\times\frac{4}{3}\pi r^3$
For bcc structure$(r)=\frac{\sqrt{}3}{4}a$
$(V)=2\times\frac{4}{3}\pi\Bigg(\frac{\sqrt{3}}{4}a\Bigg)^3=\frac{\sqrt{3}}{8}\pi a^3$
Volume of unit cell $(V)=a^3$
Percentage of volume occupied by unit cell
$=\frac{Volume \, of\, the\, atoms \, in\, unit\, cell}{Volume \, of \,unit\, cell}$
$=\frac{\frac{\sqrt{3}}{8}\pi a^3}{a^3}\times100=\frac{\sqrt{3}}{8}\pi \times 100=68\%$
Hence, the free space in bcc unit cell = 100 -68=32%.