The standard form is:
\[
\frac{dy}{dx} + P y = Q
\]
where \( P = 1 \) and \( Q = e^x \)
Integrating factor (I.F.) is:
\[
I.F. = e^{\int 1\, dx} = e^x
\]
Solution is:
\[
y \times I.F. = \int Q \times I.F. \, dx + C
\]
\[
y e^x = \int e^x \times e^x \, dx
\]
\[
= \int e^{2x} \, dx = \frac{1}{2} e^{2x}
\]
So, the particular integral is:
\[
P.I. = \frac{1}{2} e^{x}
\]
But since none of the options show \(\frac{1}{2} e^{2x}\), the closest valid particular integral solution considering standard integrating factor is option (A).