>
questions
List of practice Questions
If
$\begin{bmatrix}x+y+z\\ x+y\\ y+z\end{bmatrix} = \begin{bmatrix}9\\ 5\\ 7\end{bmatrix} $
then the value of (x, y, z) is:
Mathematics
Matrices
If
$x, y, z$
are positive integers, then value of expression
$(x + y)(y + z)(z + x)$
is
Mathematics
Sequence and series
If xy + yz + zx = 1, then :
Mathematics
Inverse Trigonometric Functions
If
$y = \sqrt{\left(\frac{1+\cos 2\theta}{1 -\cos 2\theta}\right)} $
, then
$\frac{dy}{d\theta} $
at
$\theta =\frac{3\pi}{4}$
is:
Mathematics
Continuity and differentiability
If
$y^2 = p(x),$
a polynomial of degree 3, then
$2 \frac{d}{dx} \left(y^{3} \frac{d^{2}y}{dx^{2}}\right) $
is equal to
Mathematics
limits and derivatives
if
$\begin{bmatrix}x\\ y\\ z\end{bmatrix} = \frac{1}{40} \begin{bmatrix}5&10&-5\\ -5&-2&13\\ 10&-4&6\end{bmatrix}\begin{bmatrix}5\\ 0\\ 5\end{bmatrix}$
, then the value of
$x + y + z$
is
Mathematics
Matrices
If
$x = \sin\: t \: \cos \: 2t$
and
$y = \cos\: t\: \sin\: 2t$
, then at
$ t = \frac{\pi}{4}$
, the value of
$ \frac{dy}{dx} $
is equal to :
Mathematics
Continuity and differentiability
If
$X = {x_1, x_2, x_3}$
and
$Y = {x_1, x_2, x_3, x_4, x_5}$
then find which is a reflexive relation of the following ?
Mathematics
Relations and functions
If
$x=\sin(2\,\tan^{-1}2)$
and
$y=\sin\left(\frac{1}{2}\tan^{-1}\frac{4}{3}\right)$
,than
Mathematics
Inverse Trigonometric Functions
If
$(x+iy) (2-3i)=4+i$
, then values of
$x$
,
$y$
are
Mathematics
Complex Numbers and Quadratic Equations
If
$x \in \left(-\frac{\pi}{2}, \frac{\pi }{2}\right)$
, then the value of
$tan^{-1}\left(\frac{tan\,x}{4}\right)+tan^{-1}\left(\frac{3\,sin\,2x}{5 + 3\,cos\,2x}\right)$
is
Mathematics
Inverse Trigonometric Functions
If x g of a metal forms y g of metal chloride, equivalent weight of metal is
Chemistry
Redox reactions
If X is a member of chalcogen family, the chemicalhighest stability of
$X^{2-}$
is exhibited by
Chemistry
Group 16 Elements
If
$\overrightarrow{x}\times\overrightarrow{b} \,=\,\overrightarrow{c}\times\overrightarrow{b} $
and
$ \overrightarrow{x}\,\bot\, \overrightarrow{a},$
then
$\overrightarrow{x}$
is equal to
Mathematics
Vector Algebra
If {x} denotes the fractional part of x, then
$\lim_{x \to\left[a\right]} \frac{e^{\left\{x\right\}} - \left\{x\right\}-1}{\left\{x\right\}^{2}} $
, where [a] denotes the integral part of a, is equal to
Mathematics
limits and derivatives
If
$x \frac{dy}{dx} =y \left(\log \,y - \log \,x\right)$
then the solution of the equation is
Mathematics
Differential equations
If
$x, 2y, 3z$
are in
$A.P$
., where the distinct numbers
$x, y, z$
are in
$G.P$
. then the common ratio of the
$G.P$
. is
Mathematics
Sequence and series
If
$x = 99^{50} + 100^{50}$
and
$y = \left(101\right)^{50}$
then
Mathematics
Binomial theorem
If
$x = a \cos \theta, y = b \sin \theta$
, then
$\frac{d^3 y}{dx^3}$
is equal to
Mathematics
Continuity and differentiability
If x + 1, 4x + 1, and 8x + 1 are in geometric progression, then what is the non-trivial value of x ?
Mathematics
Sequence and series
If
$x = 1 + a + a^2 + .................... $
to infinity and
$y = 1 + b + b^2 + ................... $
to infinity, where a, b are proper fractions, then
$1 + ab + a^2b^2 + .....$
to infinity is equal :
Mathematics
Sequence and series
If
$x^2 + 6x - 27 > 0$
and
$x^2 - 3x - 4 < 0 $
then
Mathematics
Complex Numbers and Quadratic Equations
If we add two vectors of equal magnitudes but in opposite directions, we get
Physics
Motion in a plane
If we plot volume of a certain mass of a gas against temperature at constant pressure, we get a straight line intersecting on the negative side at
$ -273^{\circ}C$
which explains about absolute zero. This graph is known as
Chemistry
States of matter
If work is done on a system, depends upon initial and final positions only it can be due to
Physics
work, energy and power
Prev
1
...
4428
4429
4430
4431
4432
...
4565
Next