For any real number x, let [ x ] denote the largest integer less than equal to x Let f be a real valued function defined on the interval [-10,10] by \(f(x)=\begin{cases} x-[x], & \text { if }(x) \text { is odd } \\ 1+[x]-x & \text { if }(x) \text { is even }\end{cases}\)Then the value of\( \frac{\pi^2}{10} \int\limits_{-10}^{10} f(x) \cos \pi x d x\) is :
The slope of the tangent to a curve C : y=y(x) at any point [x, y) on it is \(\frac{2 e ^{2 x }-6 e ^{- x }+9}{2+9 e ^{-2 x }}\) If C passes through the points \(\left(0, \frac{1}{2}+\frac{\pi}{2 \sqrt{2}}\right) \)and \(\left(\alpha, \frac{1}{2} e ^{2 \alpha}\right)\)$ then \(e ^\alpha\) is equal to :
The general solution of the differential equation \(\left(x-y^2\right) d x+y\left(5 x+y^2\right) d y=0\) is :
Let the eccentricity of the hyperbola\(H : \frac{x²}{a²} - \frac{y²}{b²} = 1\)be √(5/2) and length of its latus rectum be 6√2, If y = 2x + c is a tangent to the hyperbola H. then the value of c2 is equal to
If two distinct points Q, R lie on the line of intersection of the planes –x + 2y – z = 0 and 3x – 5y + 2z = 0 and\(PQ = PR = \sqrt{18}\)where the point P is (1, –2, 3), then the area of the triangle PQR is equal to