If the value of real number a> 0 for which \(x^2\)-5ax+1-0 and \(x^2-a x-5-0\) have a common real root is \(\frac{3}{\sqrt{2 \beta}}\) then \( \beta\) is equal to_______
Let \(A=\) [\(a_{ij}\)]\(_{2\times2}\) be a matrix and \(A^2 = I\) where \(a_{ij} \neq0\). If a sum of diagonal elements and b=det(A), then \(3a^2+4b^2\) is
Maria said ‘please lend me a pen’. (Convert the sentence into indirect speech)
Who was the first PM of India to visit China after the war of 1962?
Let P be a point on the parabola y2 = 4ax, where a > 0. The normal to the parabola at P meets the x -axis at a point Q. The area of the triangle PFQ where F is the focus of the parabola, is 120. If the slope m of the normal and a are both positive integers, then the pair (a, m) is
f domain of the function \[ f(x) = \log_e \left(\frac{6x^2 + 5x + 1}{2x - 1}\right) + \cos^{-1}\left(\frac{2x^2 - 3x + 4}{3x - 5}\right) \] is \( (\alpha, \beta) \cup (\gamma, \delta) \), then \( 18(\alpha^2 + \beta^2 + \gamma^2 + \delta^2) \) is equal to __________.
If \( f(x) = \begin{cases} 1 + 6x - 3x^2, & x \leq 1 \\ x + \log_2(b^2 + 7), & x > 1 \end{cases} \) is continuous at all real \( x \), then \( b \) is: