>
questions
List of practice Questions
If
\(\begin{bmatrix} x+4 & 2x & 2x \\[0.3em] 2x & x+4 & 2x\\[0.3em] 2x & 2x & x+4 \end{bmatrix}=\lambda(4-x)^2\)
,then value of
\(\lambda \)
is
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
for which value of
\(\lambda\)
is the function ,
\(f(x) = \begin{cases} \lambda(x^2-2x) & \text{if } x \leq 0 \\ 4x+1& \text{if } x > 0 \end{cases}\)
continuous at
\(x=0 ?\)
CUET (UG) - 2023
CUET (UG)
Mathematics
Continuity and differentiability
The derivative
\(\frac{\mathrm dy}{\mathrm d x}\)
,if
\(x=a(\theta -sin\theta),y=a(1+cos\theta)\)
is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
If
\(y=sin^{-1}x \)
and
\((1-x^2)\frac{d^2y}{dx^2} -x \frac{dy}{dx}=K\)
,then value of K is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
If
\(y=log[\frac{x^2}{e^2}]\)
then value of
\(\frac{d^2y}{dx^2}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Differential Equations
The condition on a and b, such that for
\(y = \frac{a}{x}-\frac{b}{x²}\)
,
\(\frac{dy}{dx} =0\)
at x=1 is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Derivatives
The interval in which the function
\(f(x) = 10-6x-2x²\)
is decreasing is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Increasing and Decreasing Functions
Area of the region bounded by the curve |x|+|y|=1 and x-axis is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Area under Simple Curves
The value of the integral
\(\int\limits_2^4 \frac{x}{x^2+1} dx\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Definite Integral
The sum of order and degree of the differential equation
\[\frac{\{1+(\frac{dy}{dx})^2\}^\frac{5}{2}}{\frac{d^2y}{dx^2}}=p\]
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Order and Degree of a Differential Equation
The solution of the differential equation
\(\frac{dy}{dx}= \frac{6}{x^2}; y(1) = 3\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Solution of Differential Equations
The mean of the number of heads in a simultaneous toss of three coins is :
CUET (UG) - 2023
CUET (UG)
Mathematics
Probability
For the LPP
Maximise z=x+y
subject to x-y≤-1, x+y≤2, x, y≥0, z has:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
Choose the wrong statement from the following:
CUET (UG) - 2023
CUET (UG)
Mathematics
Linear Programmig Problem
Let f: R→R defined by f(x)=2x
3
-7 for x∈R. Then:
(A) f is one-one function
(B) f is many to one function
(C) f is bijective function
(D) f is into function
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and Functions
Match List I with List II
LIST I
LIST II
A
.
Range of y=cosec
-1
x
I
.
R-(-1, 1)
B
.
Domain of sec
-1
x
II
.
(0, π)
C
.
Domain of sin
-1
x
III
.
[-1, 1]
D
.
Range of y=cot
-1
x
IV
.
\([\frac{-π}{2},\frac{π}{2}]\)
-{0}
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Relations and Functions
Let
\(tan^{-1}y=tan^{-1}x+tan^{-1}(\frac{2x}{1-x^2})\)
. Then y is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Inverse Trigonometric Functions
The value of 2y-3x, if
\(2\begin {bmatrix}x &5\\ 7&y-3\end{bmatrix}+\begin{bmatrix}3&-4\\ 1&2\end{bmatrix}=\begin{bmatrix}7&6 \\15&14\end{bmatrix}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
Match List - I with List II. If
\(A = \begin{vmatrix}3&-2&3 \\2 &1 &-1 \\4 &-3 &2\end{vmatrix}\)
LIST I
LIST II
A
.
M
23
I
.
-17
B
.
A
32
+a
13
II
.
-1
C
.
A
III
.
0
D
.
a
13
A
12
+a
23
A
22
+a
33
A
32
IV
.
12
Choose the correct answer from the options given below:
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
The number of square matrices of order 2 using numbers 1 and -1 exactly once and the number 0 twice is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Matrices
Let
\(\begin{vmatrix}3x&-7\\1&4\end{vmatrix}=\begin{vmatrix}3&2\\ 4&x\end{vmatrix}\)
, then value of x is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
The value of the determinant
\(\begin{vmatrix}acosθ&bsinθ&0 \\-bsinθ&acosθ&0\\ 0&0&c\end{vmatrix}\)
is:
CUET (UG) - 2023
CUET (UG)
Mathematics
Determinant
The points of discontinuity of the function
\(f\)
defined by
\(f(x) = \begin{cases} x+2 & x≤1 \\ x-2 &1<x<2\\ 0& x≥2\end{cases}\)
are:
CUET (UG) - 2023
CUET (UG)
Mathematics
Continuity and differentiability
If \( f(x) = \begin{cases} x \left( 1 + \frac{1}{2} \sin(\log x^2) \right), & x \neq 0 \\ 0, & x = 0 \end{cases} \), then \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Continuity
If \( f(x) = \begin{cases} \sqrt{\pi - \cos^{-1} x}, & x = -1 \\ \frac{\sqrt{2(1 + x)}}{\pi + \cos^{-1} x}, & x \neq -1 \end{cases} \) is right continuous at \( x = -1 \), then \( \lambda = \)
AP EAPCET - 2023
AP EAPCET
Mathematics
Continuity
Prev
1
...
3245
3246
3247
3248
3249
...
7159
Next