If the curves $$ 2x^2 + ky^2 = 30 \quad \text{and} \quad 3y^2 = 28x $$ cut each other orthogonally, then \( k = \)
The value of $ \frac{1}{1 + p^{(y-z)} + p^{(x-z)}} + \frac{1}{1 + p^{(x-y)} + p^{(z-y)}} + \frac{1}{1 + p^{(y-x)} + p^{(z-x)}}, $ is:
If the function
$ f(x) = \begin{cases} \frac{\cos ax - \cos 9x}{x^2}, & \text{if } x \neq 0 \\ 16, & \text{if } x = 0 \end{cases} $
is continuous at $ x = 0 $, then $ a = ? $
Consider the discrete-time systems $ T_1 $ and $ T_2 $ defined as follows: $ [T_1x][n] = x[0] + x[1] + \dots + x[n], $ $ [T_2x][n] = x[0] + \frac{1}{2}x[1] + \dots + \frac{1}{2^n}x[n]. $ Which of the following statements is true?
Choose the minimum number of op-amps required to implement the given expression. $ V_o = \left[ 1 + \frac{R_2}{R_1} \right] V_1 - \frac{R_2}{R_1} V_2 $
At $ T $ (K), the following data was obtained for the reaction: $ S_2O_8^{2-} + 3 I^- \rightarrow 2 SO_4^{2-} + I_3^- $.
From the data, the rate constant of the reaction (in $ M^{-1} s^{-1} $) is: