Let \(u(x, t)\) be the solution of the non-homogeneous wave equation
\[ \frac{\partial^2 u}{\partial x^2} - \frac{\partial^2 u}{\partial t^2} = \sin x \sin(2t), \quad 0<x<\pi, \ t>0 \]
\[ u(x, 0) = 0, \text{ and } \frac{\partial u}{\partial t}(x, 0) = 0, \quad \text{for } 0 \le x \le \pi, \]
\[ u(0, t) = 0, \quad u(\pi, t) = 0, \quad \text{for } t \ge 0. \]
Then the value of \( u \left( \frac{\pi}{2}, \frac{3\pi}{2} \right) \) is ................. (rounded off to 2 decimal places).