Let \(\ell^2 = \{(x_1, x_2, x_3, \dots) : x_n \in \mathbb{R} \text{ for all } n \in \mathbb{N} \text{ and } \sum_{n=1}^\infty x_n^2 < \infty\}\).
For a sequence \((x_1, x_2, x_3, \dots) \in \ell^2\), define
\[
||(x_1, x_2, x_3, \dots)||_2 = \left(\sum_{n=1}^\infty x_n^2\right)^{1/2}.
\]
Let \(S: (\ell^2, ||.||_2) \to (\ell^2, ||.||_2)\) and \(T: (\ell^2, ||.||_2) \to (\ell^2, ||.||_2)\) be defined by
\[
S(x_1, x_2, x_3, \dots) = (y_1, y_2, y_3, \dots), \text{ where } y_n = \begin{cases} 0, & n=1 \\ x_{n-1}, & n \ge 2 \end{cases}
\]
\[
T(x_1, x_2, x_3, \dots) = (y_1, y_2, y_3, \dots), \text{ where } y_n = \begin{cases} 0, & n \text{ is odd} \\ x_n, & n \text{ is even} \end{cases}
\]
Then