Consider the linear system \( A x = b \), where \( A = [a_{ij}] \), \( i, j = 1, 2, 3 \), and \( a_{ii} \neq 0 \) for \( i = 1, 2, 3 \), is a matrix with entries in \( \mathbb{R} \). For
\( D = \begin{bmatrix} a_{11} & 0 & 0 \\ 0 & a_{22} & 0 \\ 0 & 0 & a_{33} \end{bmatrix} \), let
\[
D^{-1} A = \begin{bmatrix} 1 & 1 & -2 \\ 3 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix}, \quad D^{-1}b = \begin{bmatrix} 4 \\ 4 \\ 1 \end{bmatrix}.
\]
Consider the following two statements:
S1: The approximation of \( x \) after one iteration of the Jacobi scheme with initial vector \( x_0 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \) is \( x_1 = \begin{bmatrix} 5 \\ -1 \\ -1 \end{bmatrix} \).
S2: There exists an initial vector \( x_0 \) for which the Jacobi iterative scheme diverges.
Then, which one of the following is correct?