Consider two statements: Statement 1: $ \lim_{x \to 0} \frac{\tan^{-1} x + \ln \left( \frac{1+x}{1-x} \right) - 2x}{x^5} = \frac{2}{5} $ Statement 2: $ \lim_{x \to 1} x \left( \frac{2}{1-x} \right) = e^2 \; \text{and can be solved by the method} \lim_{x \to 1} \frac{f(x)}{g(x) - 1} $
Find the area of the region defined by the conditions: $ \left\{ (x, y): 0 \leq y \leq \sqrt{9x}, y^2 \geq 3 - 6x \right\} \text{(in square units)} $
Let $ A = \{0, 1, 2, 3, 4, 5, 6\} $ and $ R_1 = \{(x, y): \max(x, y) \in \{3, 4 \}$. Consider the two statements:Statement 1: Total number of elements in $ R_1 $ is 18.Statement 2: $ R $ is symmetric but not reflexive and transitive.
Let $ I_1 = \int_{\frac{1}{2}}^{1} 2x \cdot f(2x(1 - 2x)) \, dx $ and $ I_2 = \int_{-1}^{1} f(x(1 - x)) \, dx \; \text{then} \frac{I_2}{I_1} \text{ equals to:} $
If $ A = \begin{pmatrix} 2 & 2 + p & 2 + p + q \\ 4 & 6 + 2p & 8 + 3p + 2q \\ 6 & 12 + 3p & 20 + 6p + 3q \end{pmatrix} $, then the value of $ \det(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n $, then $ m + n $ is equal to:
Match List-I with List-II and select the correct option.
Consider the following amino acid:
Which of the following options contain the correct structure of (A) and (B)?
In which of the following reactions, major product is matched correctly?
The correct IUPAC name of the product is:
Match list-I with list-II and choose the correct option.
Match List-I with List-II and select the correct option: