The value of $\delta$ is \(\underline{3.14}.\)
The left and right compartments of a thermally isolated container of length $L$ are separated by a thermally conducting, movable piston of area $A$. The left and right compartments are filled with $\frac{3}{2}$ and 1 moles of an ideal gas, respectively. In the left compartment the piston is attached by a spring with spring constant $k$ and natural length $\frac{2L}{5}$. In thermodynamic equilibrium, the piston is at a distance $\frac{L}{2}$ from the left and right edges of the container as shown in the figure. Under the above conditions, if the pressure in the right compartment is $P = \frac{kL}{A} \alpha$, then the value of $\alpha$ is ____
Let $ S $ denote the locus of the point of intersection of the pair of lines $$ 4x - 3y = 12\alpha,\quad 4\alpha x + 3\alpha y = 12, $$ where $ \alpha $ varies over the set of non-zero real numbers. Let $ T $ be the tangent to $ S $ passing through the points $ (p, 0) $ and $ (0, q) $, $ q > 0 $, and parallel to the line $ 4x - \frac{3}{\sqrt{2}} y = 0 $.
Then the value of $ pq $ is
Simple Harmonic Motion is one of the most simple forms of oscillatory motion that occurs frequently in nature. The quantity of force acting on a particle in SHM is exactly proportional to the displacement of the particle from the equilibrium location. It is given by F = -kx, where k is the force constant and the negative sign indicates that force resists growth in x.
This force is known as the restoring force, and it pulls the particle back to its equilibrium position as opposing displacement increases. N/m is the SI unit of Force.
When a particle moves to and fro about a fixed point (called equilibrium position) along with a straight line then its motion is called linear Simple Harmonic Motion. For Example spring-mass system
The restoring force or acceleration acting on the particle should always be proportional to the displacement of the particle and directed towards the equilibrium position.
When a system oscillates angular long with respect to a fixed axis then its motion is called angular simple harmonic motion.
The restoring torque (or) Angular acceleration acting on the particle should always be proportional to the angular displacement of the particle and directed towards the equilibrium position.
Τ ∝ θ or α ∝ θ
Where,