Step 1: Use formula for SI for 2 years.
\[
SI = \frac{P \times R \times T}{100}
\]
Here, \( SI = 14400, \, T = 2 \).
\[
14400 = \frac{P \times R \times 2}{100}
\]
\[
14400 = \frac{2PR}{100} \(\Rightarrow\) 14400 = \frac{PR}{50}
\]
\[
PR = 14400 \times 50 = 720000
\]
Step 2: Use formula for CI for 2 years.
\[
CI = P \left( \left(1+\frac{R}{100}\right)^2 - 1 \right)
\]
\[
16560 = P \left( \frac{R}{100} + \frac{R^2}{10000} \right) \times 2
\]
But more directly:
\[
CI - SI = \frac{P \times (R/100)^2 \times 2}{2}
\]
Actually formula: For 2 years,
\[
CI - SI = \frac{P \times R^2}{100^2}
\]
Step 3: Calculate CI - SI.
\[
CI - SI = 16560 - 14400 = 2160
\]
So,
\[
2160 = \frac{P \times R^2}{100^2}
\]
\[
P \times R^2 = 2160 \times 10000 = 21600000
\]
Step 4: Divide two relations.
From Step 1: \( PR = 720000 \).
From Step 3: \( PR^2 = 21600000 \).
\[
\frac{PR^2}{PR} = \frac{21600000}{720000}
\]
\[
R = 30%
\]
Step 5: Find principal.
\[
PR = 720000 \(\Rightarrow\) P \times 30 = 720000
\]
\[
P = \frac{720000}{30} = 24000
\]
\boxed{\text{Principal = ₹ 24,000, Rate = 30% per annum}}