Obtain the inverse Laplace transform of \( F(s) = \frac{1}{s^2(s+2)} \)
To solve for the inverse Laplace transform, we perform partial fraction decomposition on \( F(s) \).
\( \frac{1}{s^2(s+2)} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s+2} \)
Multiply both sides by \( s^2(s+2) \) to obtain: \[ 1 = A s(s+2) + B(s+2) + C s^2 \]
Now, equate coefficients and solve for \( A \), \( B \), and \( C \). After solving, we find: \[ A = \frac{1}{4}, \quad B = \frac{1}{2}, \quad C = \frac{-1}{4} \]
Now, apply the inverse Laplace transform to each term: \[ \mathcal{L}^{-1}\left(\frac{1}{s}\right) = 1, \quad \mathcal{L}^{-1}\left(\frac{1}{s^2}\right) = t, \quad \mathcal{L}^{-1}\left(\frac{1}{s+2}\right) = e^{-2t} \]
Combining these results, we get the inverse Laplace transform: \[ \mathcal{L}^{-1}\left( F(s) \right) = \frac{1}{4}(2t + e^{-2t} - 1) \]
Answer: \[ \boxed{\frac{1}{4}(2t + e^{-2t} - 1)} \]