The question asks for what type of networks Norton's theorem is applicable.
- Norton's Theorem: A simplification technique for linear circuits, stating that any linear circuit can be replaced by an equivalent circuit consisting of a current source (I_N) in parallel with a resistance (R_N).
- Linear Network: A network composed of linear circuit elements (resistors, inductors, capacitors, linear dependent sources) where the principle of superposition applies.
- Non-Linear Network: A network containing at least one non-linear element (e.g., diodes, transistors) where the principle of superposition does not apply.
Norton's theorem relies on the principle of superposition, which is only applicable to linear networks.
Norton's theorem is true for Linear networks.
Two batteries of emf's \(3V \& 6V\) and internal resistances 0.2 Ω \(\&\) 0.4 Ω are connected in parallel. This combination is connected to a 4 Ω resistor. Find:
(i) the equivalent emf of the combination
(ii) the equivalent internal resistance of the combination
(iii) the current drawn from the combination