Concept:
Use stoichiometry to identify the limiting reagent and then calculate the excess amount.
Step 1: Moles of \(\mathrm{CaCO_3}\)
Molar mass of \(\mathrm{CaCO_3} = 100\,\text{g mol}^{-1}\)
\[
n(\mathrm{CaCO_3}) = \frac{90}{100} = 0.90\,\text{mol}
\]
Step 2: Mass and Moles of HCl Present
Mass of solution:
\[
300\,\text{mL} \times 1.13\,\text{g mL}^{-1} = 339\,\text{g}
\]
Mass of HCl in solution:
\[
0.3855 \times 339 = 130.77\,\text{g}
\]
Molar mass of HCl \(= 36.5\,\text{g mol}^{-1}\)
\[
n(\mathrm{HCl}) = \frac{130.77}{36.5} \approx 3.58\,\text{mol}
\]
Step 3: Stoichiometric Requirement
From the balanced equation:
\[
1\,\text{mol } \mathrm{CaCO_3} \text{ requires } 2\,\text{mol } \mathrm{HCl}
\]
For \(0.90\,\text{mol}\) \(\mathrm{CaCO_3}\):
\[
\mathrm{HCl\ required} = 2 \times 0.90 = 1.80\,\text{mol}
\]
Mass of HCl reacted:
\[
1.80 \times 36.5 = 65.7\,\text{g}
\]
Step 4: Excess HCl Remaining
\[
\text{Unreacted HCl} = 130.77 - 65.7 = 65.07\,\text{g} \approx 64.97\,\text{g}
\]
Final Conclusion:
\[
\boxed{64.97\,\text{g of HCl remains unreacted}}
\]