Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.
[Given: Wienโs constant as \(2.9 \times 10^{โ3} m^{-K}\) and \(\frac{hc}{e} = 1.24 \times 10^{โ6} V^{-m}\)]
List-I | List-II | ||
(P) | 2000 K | (1) | The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV. |
(Q) | 3000 K | (2) | The radiation at peak wavelength is visible to human eye. |
(R) | 5000 K | (3) | The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction. |
(S) | 10000 K | (4) | The power emitted per unit area is \(\frac{1}{16}\) of that emitted by a blackbody at temperature 6000 K. |
(5) | The radiation at peak emission wavelength can be used to image human bones. |
The correct option is (C): P\(\rightarrow\)3, Q\(\rightarrow\)4, R\(\rightarrow\)2, S\(\rightarrow\)1
\[ \lambda_m T = b \]
For option (P) the temperature is minimum, hence \(\lambda_m\) will be maximum.
\[ \lambda_m = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{2000} = 1.45 \times 10^{-6} \, \text{m} = 1450 \, \text{nm} \]
\[ \sin \theta = \frac{\lambda}{d} \]
\[ 2\theta = \text{width of central maximum} \]
\[\Rightarrow \text{width} \propto \lambda \]
\(\Rightarrow\) maximum width for (P)
\[ P \rightarrow 3 \]
For option (Q), \(T = 3000\)
\[ \lambda_m = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{3000} \]
\[ \lambda_m = 0.96 \times 10^{-6} = 966.6 \, \text{nm} \]
\[ P_{3000} = 6A(3000)^4 \]
\[ P_{6000} = 6A(6000)^4 \]
\[ \frac{P_{3000}}{P_{6000}} = \left( \frac{1}{2} \right)^4 = \frac{1}{16} \]
\[ P_{3000} = \frac{1}{16} P_{6000} \]
\[ Q \rightarrow 4 \]
For (R), \(T = 5000 \, \text{K}\)
\[ \lambda_m = \frac{2.9 \times 10^{-3}}{5 \times 10^{3}} = 0.58 \times 10^{-6} = 580 \, \text{nm} \]
\(\Rightarrow\) Visible to human eyes
\[ R \rightarrow 2 \]
For (S), \(T = 10,000 \, \text{K}\)
\[ \lambda_m T = b \Rightarrow \lambda_m = \frac{2.9 \times 10^{-3}}{10,000} = 290 \, \text{nm} \]
\[ \phi = 4 \, \text{eV} \]
\[ \lambda_m = \frac{1240}{4} = 310 \, \text{nm} \]
To emit photoelectron
\[ \lambda_0 < \lambda_T \]
The correct option is (C): P\(\rightarrow\)3, Q\(\rightarrow\)4, R\(\rightarrow\)2, S\(\rightarrow\)1