Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.
[Given: Wienโs constant as \(2.9 \times 10^{โ3} m^{-K}\) and \(\frac{hc}{e} = 1.24 \times 10^{โ6} V^{-m}\)]
| List-I | List-II | ||
| (P) | 2000 K | (1) | The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV. |
| (Q) | 3000 K | (2) | The radiation at peak wavelength is visible to human eye. |
| (R) | 5000 K | (3) | The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction. |
| (S) | 10000 K | (4) | The power emitted per unit area is \(\frac{1}{16}\) of that emitted by a blackbody at temperature 6000 K. |
| (5) | The radiation at peak emission wavelength can be used to image human bones. | ||
To solve this problem, we need to match the temperature of a black body from List-I with the appropriate statement from List-II using Wien's Law and other given properties of blackbody radiation. Wien's Law is given by:
\(\lambda_{\text{max}} = \frac{b}{T}\), where \(b = 2.9 \times 10^{-3} \, \text{m}\cdot\text{K}\).
Let's calculate \(\lambda_{\text{max}}\) for each temperature in List-I:
Next, let's match these with the statements in List-II:
Correct Matches: P\(\rightarrow\)3, Q\(\rightarrow\)4, R\(\rightarrow\)2, S\(\rightarrow\)1
\[ \lambda_m T = b \]
For option (P) the temperature is minimum, hence \(\lambda_m\) will be maximum.
\[ \lambda_m = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{2000} = 1.45 \times 10^{-6} \, \text{m} = 1450 \, \text{nm} \]
\[ \sin \theta = \frac{\lambda}{d} \]
\[ 2\theta = \text{width of central maximum} \]
\[\Rightarrow \text{width} \propto \lambda \]
\(\Rightarrow\) maximum width for (P)
\[ P \rightarrow 3 \]
For option (Q), \(T = 3000\)
\[ \lambda_m = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{3000} \]
\[ \lambda_m = 0.96 \times 10^{-6} = 966.6 \, \text{nm} \]
\[ P_{3000} = 6A(3000)^4 \]
\[ P_{6000} = 6A(6000)^4 \]
\[ \frac{P_{3000}}{P_{6000}} = \left( \frac{1}{2} \right)^4 = \frac{1}{16} \]
\[ P_{3000} = \frac{1}{16} P_{6000} \]
\[ Q \rightarrow 4 \]
For (R), \(T = 5000 \, \text{K}\)
\[ \lambda_m = \frac{2.9 \times 10^{-3}}{5 \times 10^{3}} = 0.58 \times 10^{-6} = 580 \, \text{nm} \]
\(\Rightarrow\) Visible to human eyes
\[ R \rightarrow 2 \]
For (S), \(T = 10,000 \, \text{K}\)
\[ \lambda_m T = b \Rightarrow \lambda_m = \frac{2.9 \times 10^{-3}}{10,000} = 290 \, \text{nm} \]
\[ \phi = 4 \, \text{eV} \]
\[ \lambda_m = \frac{1240}{4} = 310 \, \text{nm} \]
To emit photoelectron
\[ \lambda_0 < \lambda_T \]
The correct option is (C): P\(\rightarrow\)3, Q\(\rightarrow\)4, R\(\rightarrow\)2, S\(\rightarrow\)1
Let $ P(x_1, y_1) $ and $ Q(x_2, y_2) $ be two distinct points on the ellipse $$ \frac{x^2}{9} + \frac{y^2}{4} = 1 $$ such that $ y_1 > 0 $, and $ y_2 > 0 $. Let $ C $ denote the circle $ x^2 + y^2 = 9 $, and $ M $ be the point $ (3, 0) $. Suppose the line $ x = x_1 $ intersects $ C $ at $ R $, and the line $ x = x_2 $ intersects $ C $ at $ S $, such that the $ y $-coordinates of $ R $ and $ S $ are positive. Let $ \angle ROM = \frac{\pi}{6} $ and $ \angle SOM = \frac{\pi}{3} $, where $ O $ denotes the origin $ (0, 0) $. Let $ |XY| $ denote the length of the line segment $ XY $. Then which of the following statements is (are) TRUE?