Question:

Match the temperature of a black body given in List-I with an appropriate statement in List-II, and choose the correct option.
[Given: Wienโ€™s constant as \(2.9 \times 10^{โˆ’3} m^{-K}\) and \(\frac{hc}{e} = 1.24 \times 10^{โˆ’6} V^{-m}\)]

List-IList-II
(P)2000 K(1)The radiation at peak wavelength can lead to emission of photoelectrons from a metal of work function 4 eV.
(Q)3000 K(2)The radiation at peak wavelength is visible to human eye.
(R)5000 K(3)The radiation at peak emission wavelength will result in the widest central maximum of a single slit diffraction.
(S)10000 K(4)The power emitted per unit area is \(\frac{1}{16}\) of that emitted by a blackbody at temperature 6000 K.
  (5)The radiation at peak emission wavelength can be used to image human bones.

Updated On: May 24, 2024
  • P\(\rightarrow\)3, Q\(\rightarrow\)5, R \(\rightarrow\)2, S\(\rightarrow\)
  • P\(\rightarrow\)3, Q\(\rightarrow\)2, R\(\rightarrow\)4, S\(\rightarrow\)
  • P\(\rightarrow\)3, Q\(\rightarrow\)4, R\(\rightarrow\)2, S\(\rightarrow\)
  • P\(\rightarrow\)1, Q\(\rightarrow\)2, R\(\rightarrow\)5, S\(\rightarrow\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Approach Solution - 1

The correct option is (C): P\(\rightarrow\)3, Q\(\rightarrow\)4, R\(\rightarrow\)2, S\(\rightarrow\)1

Was this answer helpful?
3
1
Hide Solution
collegedunia
Verified By Collegedunia

Approach Solution -2

\[ \lambda_m T = b \]

For option (P) the temperature is minimum, hence \(\lambda_m\) will be maximum.

\[ \lambda_m = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{2000} = 1.45 \times 10^{-6} \, \text{m} = 1450 \, \text{nm} \]

\[ \sin \theta = \frac{\lambda}{d} \]

\[ 2\theta = \text{width of central maximum} \]

\[\Rightarrow \text{width} \propto \lambda \]

\(\Rightarrow\) maximum width for (P)

\[ P \rightarrow 3 \]

For option (Q), \(T = 3000\)

\[ \lambda_m = \frac{b}{T} = \frac{2.9 \times 10^{-3}}{3000} \]

\[ \lambda_m = 0.96 \times 10^{-6} = 966.6 \, \text{nm} \]

\[ P_{3000} = 6A(3000)^4 \]

\[ P_{6000} = 6A(6000)^4 \]

\[ \frac{P_{3000}}{P_{6000}} = \left( \frac{1}{2} \right)^4 = \frac{1}{16} \]

\[ P_{3000} = \frac{1}{16} P_{6000} \]

\[ Q \rightarrow 4 \]

For (R), \(T = 5000 \, \text{K}\)

\[ \lambda_m = \frac{2.9 \times 10^{-3}}{5 \times 10^{3}} = 0.58 \times 10^{-6} = 580 \, \text{nm} \]

\(\Rightarrow\) Visible to human eyes

\[ R \rightarrow 2 \]

For (S), \(T = 10,000 \, \text{K}\)

\[ \lambda_m T = b \Rightarrow \lambda_m = \frac{2.9 \times 10^{-3}}{10,000} = 290 \, \text{nm} \]

\[ \phi = 4 \, \text{eV} \]

\[ \lambda_m = \frac{1240}{4} = 310 \, \text{nm} \]

To emit photoelectron

\[ \lambda_0 < \lambda_T \]


The correct option is (C): P\(\rightarrow\)3, Q\(\rightarrow\)4, R\(\rightarrow\)2, S\(\rightarrow\)1

Was this answer helpful?
0
0

Questions Asked in JEE Advanced exam

View More Questions