LIST I | LIST II | ||
I | rate =\(\frac{k[X]}{Xs+[X]}\) | P | ![]() |
II | rate =\(\frac{k[X]}{Xs+[X]}\) | Q | ![]() |
III | rate =\(\frac{k[X]}{Xs+[X]}\) | R | ![]() |
IV | rate =\(\frac{k[X]^2}{Xs+[X]}\),where initial concentration of X is much higher than Xs | S | ![]() |
|
| T | ![]() |
I → P; II → Q; III → S; IV → T
I → R; II → S; III → S; IV → T
I → P; II → Q; III → Q; IV → R
I → R; II → S; III → Q; IV → R
This is a first-order rate equation under all possible concentrations. The graph for this case shows initial concentration of X vs time.
The corresponding profile is P.
- This represents a second-order rate equation when the initial concentration of X is much smaller than \( X_{\infty} \). The graph shows **small concentration of X**. - The corresponding profile is **Q**.
This is a first-order rate equation where the initial concentration of X is much higher than \( X_{\infty} \). The graph shows **initial concentration of X vs time** and typically exhibits exponential decay.
The corresponding profile is S.
This represents a general rate equation where the initial concentration of X is much higher than \( X_{\infty} \). The graph shows concentration of X vs time with a quadratic decrease for higher-order reactions.
The corresponding profile is T.
The correct matches are:
The correct option is A: I → P; II → Q; III → S; IV → T.
Observe the following reactions:
\( AB(g) + 25 H_2O(l) \rightarrow AB(H_2S{O_4}) \quad \Delta H = x \, {kJ/mol}^{-1} \)
\( AB(g) + 50 H_2O(l) \rightarrow AB(H_2SO_4) \quad \Delta H = y \, {kJ/mol}^{-1} \)
The enthalpy of dilution, \( \Delta H_{dil} \) in kJ/mol\(^{-1}\), is:
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
The center of a disk of radius $ r $ and mass $ m $ is attached to a spring of spring constant $ k $, inside a ring of radius $ R>r $ as shown in the figure. The other end of the spring is attached on the periphery of the ring. Both the ring and the disk are in the same vertical plane. The disk can only roll along the inside periphery of the ring, without slipping. The spring can only be stretched or compressed along the periphery of the ring, following Hooke’s law. In equilibrium, the disk is at the bottom of the ring. Assuming small displacement of the disc, the time period of oscillation of center of mass of the disk is written as $ T = \frac{2\pi}{\omega} $. The correct expression for $ \omega $ is ( $ g $ is the acceleration due to gravity): 