Step 1: Analyze each function in Column I
A) $|x|$: In $(-1,1)$, $f(x) = -x$ for $x<0$, $f(x) = x$ for $x \geq 0$. Derivative: $f'(x) = -1$ for $x<0$, $f'(x) = 1$ for $x>0$, not differentiable at $x = 0$. But $f'(x)>0$ where defined, so strictly increasing, and continuous.
B) $\sqrt{|x|}$: $f(x) = \sqrt{-x}$ for $x<0$, $\sqrt{x}$ for $x \geq 0$. Continuous, but derivative $\frac{1}{2\sqrt{|x|}}$ is undefined at $x = 0$.
C) $x + |x|$: $f(x) = 0$ for $x \leq 0$, $f(x) = 2x$ for $x>0$. Not differentiable at $x = 0$, strictly increasing, not differentiable in $(-1,1)$.
D) $|x - |x|| + |x + 1|$: For $x \geq 0$, $|x - x| + |x + 1| = 0 + (x + 1) = x + 1$; for $-1<x<0$, $|x - (-x)| + |x + 1| = 2x + (x + 1) = 3x + 1$. Differentiable in $(-1,0)$ and $(0,1)$, but not at $x = 0$.
Step 2: Match with Column II
A) Strictly increasing and continuous: I.
B) Continuous, not differentiable in $(-1,1)$: II.
C) Strictly increasing, not differentiable: V.
D) Differentiable in $(-1,0), (0,1)$: IV.
Step 3: Select the correct option
A-I, B-II, C-V, D-IV matches option (3).