Step 1: Understanding Degrees of Freedom and Heat Capacity Ratios
The ratio of specific heats \( \frac{C_p}{C_v} \) for different gases is derived from the degrees of freedom \( f \) using:
\[
\gamma = \frac{C_p}{C_v} = \frac{f+2}{f}
\]
where \( f \) is the number of degrees of freedom of a molecule.
Step 2: Identifying Correct Values
- Monoatomic gases (e.g., noble gases) have \( f = 3 \), so:
\[
\gamma = \frac{3+2}{3} = \frac{5}{3} \quad \Rightarrow \quad \text{(II)}
\]
- Diatomic (rigid) gases (e.g., \( O_2, N_2 \) at low temperatures) have \( f = 5 \), so:
\[
\gamma = \frac{5+2}{5} = \frac{7}{5} \quad \Rightarrow \quad \text{(III)}
\]
- Diatomic (non-rigid) gases (considering vibrational motion) have \( f = 6 \), so:
\[
\gamma = \frac{6+2}{6} = \frac{4+f}{3+f} \quad \Rightarrow \quad \text{(IV)}
\]
- Polyatomic gases (e.g., \( CO_2, H_2O \)) have more vibrational modes, and for typical cases:
\[
\gamma = \frac{9}{7} \quad \Rightarrow \quad \text{(I)}
\]
Step 3: Correct Matching
\[
A \rightarrow II, \quad B \rightarrow III, \quad C \rightarrow IV, \quad D \rightarrow I
\]
Thus, the correct answer is \( \mathbf{A-II, B-III, C-IV, D-I} \).