List I (Functions) | List II (Derivatives) | ||
A. | f(x)=sin-1x | I. | \(\frac{1}{1+x^2}\), x ∈ R |
B. | f(x)=tan-1x | II. | \(\frac{1}{\sqrt{1-x^2}}\), x ∈ (-1, 1) |
C. | f(x)=cos-1x | III. | \(-\frac{1}{\sqrt{1-x^2}}\), x ∈ (-1, 1) |
D. | f(x)=sin-1x | IV. | \(-\frac{1}{1+x^2}\), x ∈ R |
If $y = 5 \cos x - 3 \sin x$, prove that $\frac{d^2y}{dx^2} + y = 0$.
Show that \( f(x) = \tan^{-1}(\sin x + \cos x) \) is an increasing function in \( \left[ 0, \frac{\pi}{4} \right] \).