List I | List II | ||
A. | Marshall Edgeworth's Index Number | I. | \(\frac{\sum p_1q_0}{\sum p_0q_0}\times100\) |
B. | Laspeyre's Index Number | II. | \(\sqrt{\frac{\sum p_1q_0}{\sum p_0q_0}\times\frac{\sum p_1q_1}{\sum p_0q_1}}\times100\) |
C. | Fisher's Ideal Index Number | III. | \(\frac{\sum p_1q_1}{\sum p_0q_1}\times100\) |
D. | Paasche's Index Number | IV. | \(\frac{\sum p_1(q_0+q_1)}{\sum p_0(q_0+q_1)}\times100\) |
List I | List II | ||
A. | Marshall Edgeworth's Index Number | I. | \(\frac{\sum p_1q_0}{\sum p_0q_0}\times100\) |
B. | Laspeyre's Index Number | II. | \(\sqrt{\frac{\sum p_1q_0}{\sum p_0q_0}\times\frac{\sum p_1q_1}{\sum p_0q_1}}\times100\) |
C. | Fisher's Ideal Index Number | III. | \(\frac{\sum p_1q_1}{\sum p_0q_1}\times100\) |
D. | Paasche's Index Number | IV. | \(\frac{\sum p_1(q_0+q_1)}{\sum p_0(q_0+q_1)}\times100\) |
Let the Mean and Variance of five observations $ x_i $, $ i = 1, 2, 3, 4, 5 $ be 5 and 10 respectively. If three observations are $ x_1 = 1, x_2 = 3, x_3 = a $ and $ x_4 = 7, x_5 = b $ with $ a>b $, then the Variance of the observations $ n + x_n $ for $ n = 1, 2, 3, 4, 5 $ is
Find the mean of the following distribution:
\[\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{Class-interval} & 11-13 & 13-15 & 15-17 & 17-19 & 19-21 & 21-23 & 23-25 \\ \hline \text{Frequency} & \text{7} & \text{6} & \text{9} & \text{13} & \text{20} & \text{5} & \text{4} \\ \hline \end{array}\]