Question:

Match List I with List II:
List IList II
A.Marshall Edgeworth's Index NumberI.\(\frac{\sum p_1q_0}{\sum p_0q_0}\times100\)
B.Laspeyre's Index NumberII.\(\sqrt{\frac{\sum p_1q_0}{\sum p_0q_0}\times\frac{\sum p_1q_1}{\sum p_0q_1}}\times100\)
C.Fisher's Ideal Index NumberIII.\(\frac{\sum p_1q_1}{\sum p_0q_1}\times100\)
D.Paasche's Index NumberIV.\(\frac{\sum p_1(q_0+q_1)}{\sum p_0(q_0+q_1)}\times100\)

Updated On: May 11, 2025
  • A-I, B-II, C-IV, D-III
  • A-IV, B-I, C-II, D-III
  • A-II, B-IV, C-III, D-I
  • A-III, B-I, C-II, D-IV
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The task is to match items from List I with List II, based on the definitions of various index numbers:
List IList II
A.Marshall Edgeworth's Index NumberI.\(\frac{\sum p_1q_0}{\sum p_0q_0}\times100\)
B.Laspeyre's Index NumberII.\(\sqrt{\frac{\sum p_1q_0}{\sum p_0q_0}\times\frac{\sum p_1q_1}{\sum p_0q_1}}\times100\)
C.Fisher's Ideal Index NumberIII.\(\frac{\sum p_1q_1}{\sum p_0q_1}\times100\)
D.Paasche's Index NumberIV.\(\frac{\sum p_1(q_0+q_1)}{\sum p_0(q_0+q_1)}\times100\)
Analysis:
A. Marshall Edgeworth's Index Number involves a mix of initial and final year quantities: IV, the formula: \(\frac{\sum p_1(q_0+q_1)}{\sum p_0(q_0+q_1)}\times100\).
B. Laspeyre's Index Number uses base year quantities: I, the formula: \(\frac{\sum p_1q_0}{\sum p_0q_0}\times100\).
C. Fisher's Ideal Index Number is the geometric mean of Laspeyre's and Paasche's indices: II, the formula: \(\sqrt{\frac{\sum p_1q_0}{\sum p_0q_0}\times\frac{\sum p_1q_1}{\sum p_0q_1}}\times100\).
D. Paasche's Index Number uses the current year quantities: III, the formula: \(\frac{\sum p_1q_1}{\sum p_0q_1}\times100\).
Thus, the correct matches are:
  • A-IV
  • B-I
  • C-II
  • D-III
Correct Answer: A-IV, B-I, C-II, D-III
Was this answer helpful?
0
0

Top Questions on Statistics

View More Questions