A. Marshall Edgeworth's Index Number involves a mix of initial and final year quantities: IV, the formula: \(\frac{\sum p_1(q_0+q_1)}{\sum p_0(q_0+q_1)}\times100\).
B. Laspeyre's Index Number uses base year quantities: I, the formula: \(\frac{\sum p_1q_0}{\sum p_0q_0}\times100\).
C. Fisher's Ideal Index Number is the geometric mean of Laspeyre's and Paasche's indices: II, the formula: \(\sqrt{\frac{\sum p_1q_0}{\sum p_0q_0}\times\frac{\sum p_1q_1}{\sum p_0q_1}}\times100\).
D. Paasche's Index Number uses the current year quantities: III, the formula: \(\frac{\sum p_1q_1}{\sum p_0q_1}\times100\).