LIST I | LIST II | ||
A. | \(\frac{d}{dx} [tan^{-1} (\frac{3x-x^3}{1-3x^2})]\) | I. | \(\frac{3}{1+x^2}\) |
B. | \(\frac{d}{dx}[cos^{-1}(\frac{1-x^2}{1+x^2})]\) | II. | \(\frac{-3}{1+x^2}\) |
C. | \(\frac{d}{dx}[cos^{-1} (\frac{2x}{1+x^2})]\) | III. | \(\frac{-2}{1+x^2}\) |
D. | \(\frac{d}{dx}[cot^{-1}(\frac{3x-x^3}{1-3x^2})]\) | IV. | \(\frac{2}{1+x^2}\) |
List-I | List-II |
---|---|
The derivative of \( \log_e x \) with respect to \( \frac{1}{x} \) at \( x = 5 \) is | (I) -5 |
If \( x^3 + x^2y + xy^2 - 21x = 0 \), then \( \frac{dy}{dx} \) at \( (1, 1) \) is | (II) -6 |
If \( f(x) = x^3 \log_e \frac{1}{x} \), then \( f'(1) + f''(1) \) is | (III) 5 |
If \( y = f(x^2) \) and \( f'(x) = e^{\sqrt{x}} \), then \( \frac{dy}{dx} \) at \( x = 0 \) is | (IV) 0 |
List-I (Function) | List-II (Derivative w.r.t. x) | |
---|---|---|
(A) \( \frac{5^x}{\ln 5} \) | (I) \(5^x (\ln 5)^2\) | |
(B) \(\ln 5\) | (II) \(5^x \ln 5\) | |
(C) \(5^x \ln 5\) | (III) \(5^x\) | |
(D) \(5^x\) | (IV) 0 |