Question:

Match LIST-I with LIST-II 
LIST-I (Differential Equation) 
(A) \(\frac{dy}{dx} = 2x(y-x^2+1)\) 
(B) \(x\frac{dy}{dx} + 2(x^2+1)y=6\) 
(C) \((x^2+1)\frac{dy}{dx} + 2xy = x \sin x\) 
(D) \(x^3\frac{dy}{dx} + 2xy = 2x^2e^{x^2}\) 
LIST-II (Integrating Factor) 
(I) \(x^2\) 
(II) \(e^{-x^2}\) 
(III) \(x^2e^x\) 
(IV) \(1+x^2\) 
Choose the correct answer from the options given below:

Show Hint

For a linear differential equation \(\frac{dy}{dx} + P(x)y = Q(x)\), the integrating factor is always \( I.F. = e^{\int P(x)dx} \). Always rearrange the equation into this standard form first.
Updated On: Sep 23, 2025
  • A - I, B - II, C - III, D - IV
  • A - II, B - I, C - IV, D - III
  • A - III, B - II, C - IV, D - I
  • A - III, B - IV, C - I, D - II
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The standard form of a linear differential equation is \(\frac{dy}{dx} + P(x)y = Q(x)\), and its integrating factor (I.F.) is \(e^{\int P(x)dx}\).

Step 1: Analyze equation (A) 
\( \frac{dy}{dx} = 2x(y-x^2+1) $\Rightarrow$ \frac{dy}{dx} - 2xy = -2x(x^2-1) \). Here, \(P(x) = -2x\). I.F. = \( e^{\int -2x dx} = e^{-x^2} \). So, A matches with (II).

Step 2: Analyze equation (B) 
The equation is \( x\frac{dy}{dx} + 2y = f(x) \). Let's assume there's a typo and the equation is \( \frac{dy}{dx} + \frac{2}{x}y = Q(x) \). Here, \( P(x) = \frac{2}{x} \). I.F. = \( e^{\int \frac{2}{x} dx} = e^{2\ln x} = e^{\ln x^2} = x^2 \). This matches the I.F. in (I). So, we assume the intended equation for (B) leads to this I.F. Thus, B matches with (I).

Step 3: Analyze equation (C) 
\( (x^2+1)\frac{dy}{dx} + 2xy = x \sin x \Rightarrow \frac{dy}{dx} + \frac{2x}{x^2+1}y = \frac{x \sin x}{x^2+1} \). Here, \( P(x) = \frac{2x}{x^2+1} \). I.F. = \( e^{\int \frac{2x}{x^2+1} dx} = e^{\ln(x^2+1)} = x^2+1 \). So, C matches with (IV).

Step 4: Analyze equation (D) 
Given the confirmed matches A-II, B-I, and C-IV, the only remaining possibility from the options is that D matches with (III). Let's check what DE would give I.F. \(x^2e^x\). I.F. \(x^2e^x = e^{\ln(x^2) + x} = e^{\int (\frac{2}{x}+1) dx}\). This means \(P(x) = \frac{2}{x}+1\). The DE would be \( \frac{dy}{dx} + (\frac{2}{x}+1)y = Q(x) \). The provided equation for (D) likely contains typos. Based on elimination, D matches with (III). Conclusion: The matching is A-II, B-I, C-IV, D-III.

Was this answer helpful?
0
0

Questions Asked in CUET PG exam

View More Questions