
The equations and dimensional analysis are as follows:
The torque (\(\tau\)) is given by: \[ \tau = \mathbf{r} \times \mathbf{F} \implies [\tau] = [ML^2T^{-2}] \]
The magnetic field (\(\mathbf{B}\)) is derived as: \[ \mathbf{F} = [q \mathbf{v} \times \mathbf{B}] \implies [\mathbf{B}] = \frac{[\mathbf{F}]}{[q][\mathbf{v}]} = \frac{MLT^{-2}}{ATL^{-1}} = [MA^{-1}T^{-2}] \]
The magnetic moment (\(\mathbf{M}\)) has the dimensions: \[ [\mathbf{M}] = [\mathbf{I} \times \mathbf{A}] = [AL^2] \]
Using Biot-Savart's Law: \[ B = \frac{\mu_0 I dl \sin \theta}{r^2} \]
The permeability of free space (\(\mu\)) is derived as: \[ \mu = \frac{B r^2}{I dl} \implies \mu = \frac{MT^{-2}A^{-1} \times L^2}{AL} = [MLT^{-2}A^{-2}] \]
Thus, the correct matching is:
To solve the problem of matching List I with List II, we need to understand the dimensional formulas related to each physical quantity.
Thus, the correct matching is:
Therefore, the correct answer is A-IV, B-III, C-II, D-I.

The equivalent resistance between the points \(A\) and \(B\) in the given circuit is \[ \frac{x}{5}\,\Omega. \] Find the value of \(x\). 
Method used for separation of mixture of products (B and C) obtained in the following reaction is: 
In the following \(p\text{–}V\) diagram, the equation of state along the curved path is given by \[ (V-2)^2 = 4ap, \] where \(a\) is a constant. The total work done in the closed path is: 
Let \( ABC \) be a triangle. Consider four points \( p_1, p_2, p_3, p_4 \) on the side \( AB \), five points \( p_5, p_6, p_7, p_8, p_9 \) on the side \( BC \), and four points \( p_{10}, p_{11}, p_{12}, p_{13} \) on the side \( AC \). None of these points is a vertex of the triangle \( ABC \). Then the total number of pentagons that can be formed by taking all the vertices from the points \( p_1, p_2, \ldots, p_{13} \) is ___________.