The equations and dimensional analysis are as follows:
The torque (\(\tau\)) is given by: \[ \tau = \mathbf{r} \times \mathbf{F} \implies [\tau] = [ML^2T^{-2}] \]
The magnetic field (\(\mathbf{B}\)) is derived as: \[ \mathbf{F} = [q \mathbf{v} \times \mathbf{B}] \implies [\mathbf{B}] = \frac{[\mathbf{F}]}{[q][\mathbf{v}]} = \frac{MLT^{-2}}{ATL^{-1}} = [MA^{-1}T^{-2}] \]
The magnetic moment (\(\mathbf{M}\)) has the dimensions: \[ [\mathbf{M}] = [\mathbf{I} \times \mathbf{A}] = [AL^2] \]
Using Biot-Savart's Law: \[ B = \frac{\mu_0 I dl \sin \theta}{r^2} \]
The permeability of free space (\(\mu\)) is derived as: \[ \mu = \frac{B r^2}{I dl} \implies \mu = \frac{MT^{-2}A^{-1} \times L^2}{AL} = [MLT^{-2}A^{-2}] \]
Thus, the correct matching is:
The motion of an airplane is represented by the velocity-time graph as shown below. The distance covered by the airplane in the first 30.5 seconds is km.
The least acidic compound, among the following is
Choose the correct set of reagents for the following conversion: