The equations and dimensional analysis are as follows:
The torque (\(\tau\)) is given by: \[ \tau = \mathbf{r} \times \mathbf{F} \implies [\tau] = [ML^2T^{-2}] \]
The magnetic field (\(\mathbf{B}\)) is derived as: \[ \mathbf{F} = [q \mathbf{v} \times \mathbf{B}] \implies [\mathbf{B}] = \frac{[\mathbf{F}]}{[q][\mathbf{v}]} = \frac{MLT^{-2}}{ATL^{-1}} = [MA^{-1}T^{-2}] \]
The magnetic moment (\(\mathbf{M}\)) has the dimensions: \[ [\mathbf{M}] = [\mathbf{I} \times \mathbf{A}] = [AL^2] \]
Using Biot-Savart's Law: \[ B = \frac{\mu_0 I dl \sin \theta}{r^2} \]
The permeability of free space (\(\mu\)) is derived as: \[ \mu = \frac{B r^2}{I dl} \implies \mu = \frac{MT^{-2}A^{-1} \times L^2}{AL} = [MLT^{-2}A^{-2}] \]
Thus, the correct matching is:
Let \[ I(x) = \int \frac{dx}{(x-11)^{\frac{11}{13}} (x+15)^{\frac{15}{13}}} \] If \[ I(37) - I(24) = \frac{1}{4} \left( b^{\frac{1}{13}} - c^{\frac{1}{13}} \right) \] where \( b, c \in \mathbb{N} \), then \[ 3(b + c) \] is equal to:
For the thermal decomposition of \( N_2O_5(g) \) at constant volume, the following table can be formed, for the reaction mentioned below: \[ 2 N_2O_5(g) \rightarrow 2 N_2O_4(g) + O_2(g) \] Given: Rate constant for the reaction is \( 4.606 \times 10^{-2} \text{ s}^{-1} \).