
Use dimensional analysis:
Coefficient of viscosity \( \eta = \frac{F}{A} \frac{dy}{dt} \Rightarrow [\eta] = [ML^{-1}T^{-1}] \).
Surface Tension \( S.T = \frac{F}{L} \Rightarrow [ML^{0}T^{-2}] \).
Angular momentum \( L = mvr \Rightarrow [ML^{2}T^{-1}] \).
Rotational kinetic energy \( K.E. = \frac{1}{2} I \omega^2 \Rightarrow [ML^{2}T^{-2}] \).
This confirms the matching as \( A - III \), \( B - IV \), \( C - II \), \( D - I \).
The ratio of the power of a light source \( S_1 \) to that of the light source \( S_2 \) is 2. \( S_1 \) is emitting \( 2 \times 10^{15} \) photons per second at 600 nm. If the wavelength of the source \( S_2 \) is 300 nm, then the number of photons per second emitted by \( S_2 \) is ________________ \( \times 10^{14} \).
The molar conductance of an infinitely dilute solution of ammonium chloride was found to be 185 S cm$^{-1}$ mol$^{-1}$ and the ionic conductance of hydroxyl and chloride ions are 170 and 70 S cm$^{-1}$ mol$^{-1}$, respectively. If molar conductance of 0.02 M solution of ammonium hydroxide is 85.5 S cm$^{-1}$ mol$^{-1}$, its degree of dissociation is given by x $\times$ 10$^{-1}$. The value of x is ______. (Nearest integer)
x mg of Mg(OH)$_2$ (molar mass = 58) is required to be dissolved in 1.0 L of water to produce a pH of 10.0 at 298 K. The value of x is ____ mg. (Nearest integer) (Given: Mg(OH)$_2$ is assumed to dissociate completely in H$_2$O)
Sea water, which can be considered as a 6 molar (6 M) solution of NaCl, has a density of 2 g mL$^{-1}$. The concentration of dissolved oxygen (O$_2$) in sea water is 5.8 ppm. Then the concentration of dissolved oxygen (O$_2$) in sea water, in x $\times$ 10$^{-4}$ m. x = _______. (Nearest integer)
Given: Molar mass of NaCl is 58.5 g mol$^{-1}$Molar mass of O$_2$ is 32 g mol$^{-1}$.