Match List-I with List-II and choose the correct option:
\[ \begin{array}{|l|l|} \hline \textbf{LIST-I (Function)} & \textbf{LIST-II (Expansion)} \\ \hline A. \log(1-x) & I. 1 + \frac{1}{3} + \frac{1}{6} + \frac{3}{40} + \frac{15}{336} + \dots \\ \hline B. \sin^{-1} x & II. 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \\ \hline C. \log 2 & III. x + \frac{1}{2} \frac{x^3}{3} + \frac{1 \cdot 3}{2 \cdot 4} \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \frac{x^7}{7} + \dots, -1 < x \le 1 \\ \hline D. \frac{\pi}{2} & IV. -x - \frac{x^2}{2} - \frac{x^3}{3} - \dots, -1 \le x < 1 \\ \hline \end{array} \]
Find the residue of \( (67 + 89 + 90 + 87) \pmod{11} \):
Match List-I with List-II and choose the correct option:
LIST-I (Infinite Series) | LIST-II (Nature of Series) |
---|---|
(A) \( 12 - 7 - 3 - 2 + 12 - 7 - 3 - 2 + \dots \) | (II) oscillatory |
(B) \( 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \) | (IV) conditionally convergent |
(C) \( \sum_{n=0}^{\infty} \left( (n^3+1)^{1/3} - n \right) \) | (I) convergent |
(D) \( \sum_{n=1}^{\infty} \frac{1}{n \left( 1 + \frac{1}{n} \right)} \) | (III) divergent |
Choose the correct answer from the options given below:
Match List-I with List-II and choose the correct option:
LIST-I (Set) | LIST-II (Supremum/Infimum) |
---|---|
(A) \( S = \{2, 3, 5, 10\} \) | (III) Sup S = 10, Inf S = 2 |
(B) \( S = (1, 2] \cup [3, 8) \) | (IV) Sup S = 8, Inf S = 1 |
(C) \( S = \{2, 2^2, 2^3, \dots, 2^n, \dots\} \) | (II) Sup S = 5, Inf S = -5 |
(D) \( S = \{x \in \mathbb{Z} : x^2 \le 25\} \) | (I) Inf S = 2 |
Choose the correct answer from the options given below:
Which of the following are correct?
A. A set \( S = \{(x, y) \mid xy \leq 1 : x, y \in \mathbb{R}\} \) is a convex set.
B. A set \( S = \{(x, y) \mid x^2 + 4y^2 \leq 12 : x, y \in \mathbb{R}\} \) is a convex set.
C. A set \( S = \{(x, y) \mid y^2 - 4x \leq 0 : x, y \in \mathbb{R}\} \) is a convex set.
D. A set \( S = \{(x, y) \mid x^2 + 4y^2 \geq 12 : x, y \in \mathbb{R}\} \) is a convex set.
If p is a prime number and a group G is of the order p2, then G is:
A weight of $500\,$N is held on a smooth plane inclined at $30^\circ$ to the horizontal by a force $P$ acting at $30^\circ$ to the inclined plane as shown. Then the value of force $P$ is:
A steel wire of $20$ mm diameter is bent into a circular shape of $10$ m radius. If modulus of elasticity of wire is $2\times10^{5}\ \text{N/mm}^2$, then the maximum bending stress induced in wire is: