Mass = \( (28 \pm 0.01) \, \text{g} \), Volume = \( (5 \pm 0.1) \, \text{cm}^3 \). What is the percentage error in density?
The density \( \rho \) of an object is given by the formula: \[ \rho = \frac{\text{Mass}}{\text{Volume}} \] Given: - Mass = \( 28 \pm 0.01 \) g - Volume = \( 5 \pm 0.1 \) cm³ The formula for density error is: \[ \% \, \text{error in density} = \left( \frac{\Delta m}{m} + \frac{\Delta V}{V} \right) \times 100 \] where: - \( \Delta m = 0.01 \, \text{g} \) (uncertainty in mass), - \( m = 28 \, \text{g} \), - \( \Delta V = 0.1 \, \text{cm}^3 \) (uncertainty in volume), - \( V = 5 \, \text{cm}^3 \). Substituting the given values: \[ \% \, \text{error in density} = \left( \frac{0.01}{28} + \frac{0.1}{5} \right) \times 100 \] First, calculate the individual percentage errors: - \( \frac{0.01}{28} \approx 0.000357 \), - \( \frac{0.1}{5} = 0.02 \). Now, add the errors: \[ \% \, \text{error in density} = (0.000357 + 0.02) \times 100 = 2.0357 \% \] Thus, the percentage error in density is approximately \( 3.57 \% \)
Match the LIST-I with LIST-II
LIST-I | LIST-II | ||
---|---|---|---|
A. | Boltzmann constant | I. | \( \text{ML}^2\text{T}^{-1} \) |
B. | Coefficient of viscosity | II. | \( \text{MLT}^{-3}\text{K}^{-1} \) |
C. | Planck's constant | III. | \( \text{ML}^2\text{T}^{-2}\text{K}^{-1} \) |
D. | Thermal conductivity | IV. | \( \text{ML}^{-1}\text{T}^{-1} \) |
Choose the correct answer from the options given below :