The stream function \( \Psi = x^2 - y^2 \) represents a 2D incompressible flow.
To find the velocity components from the stream function:
\[
u = \frac{\partial \Psi}{\partial y} = -2y, \quad v = -\frac{\partial \Psi}{\partial x} = -2x
\]
At point (1,1):
\[
u = -2(1) = -2, \quad v = -2(1) = -2
\]
Now, the magnitude of the velocity vector is:
\[
|\vec{V}| = \sqrt{u^2 + v^2} = \sqrt{(-2)^2 + (-2)^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}
\]
\[
\boxed{2\sqrt{2}}
\]