List-I shows various functional dependencies of energy $ E $ on the atomic number $ Z $. Energies associated with certain phenomena are given in List-II. Choose the option that describes the correct match between the entries in List-I to those in List-II. 
P \( \rightarrow \) 3, Q \( \rightarrow \) 2, R \( \rightarrow \) 1, S \( \rightarrow \) 5
(P) \( E \propto Z^2 \)
This is the energy dependence for hydrogen-like atoms (Bohr model). The energy of electronic transitions in such atoms varies as: \[ E_n = - \frac{Z^2}{n^2} \cdot \text{constant} \] \[ \Rightarrow \text{P} \rightarrow 5 \quad \text{(Energy of electronic transitions in hydrogen-like atoms)} \] (Q) \( E \propto (Z - 1)^2 \)
This is the empirical formula for characteristic x-rays (Moseley’s law), accounting for screening by inner electrons: \[ E = a (Z - 1)^2 \Rightarrow \text{Q} \rightarrow 1 \] (R) \( E \propto Z(Z - 1) \)
This is the electrostatic (Coulomb) part of nuclear binding energy between protons, modeled as: \[ E_{\text{Coulomb}} \propto \frac{Z(Z - 1)}{A^{1/3}} \Rightarrow \text{R} \rightarrow 2 \] (S) \( E \) practically independent of \( Z \)
The average nuclear binding energy per nucleon for stable nuclei (mass number 30 to 170) is nearly constant, i.e., independent of \( Z \): \[ \Rightarrow \text{S} \rightarrow 4 \]
The reaction sequence given below is carried out with 16 moles of X. The yield of the major product in each step is given below the product in parentheses. The amount (in grams) of S produced is ____. 
Use: Atomic mass (in amu): H = 1, C = 12, O = 16, Br = 80
Let $ \mathbb{R} $ denote the set of all real numbers. Then the area of the region $$ \left\{ (x, y) \in \mathbb{R} \times \mathbb{R} : x > 0, y > \frac{1}{x},\ 5x - 4y - 1 > 0,\ 4x + 4y - 17 < 0 \right\} $$ is
As shown in the figures, a uniform rod $ OO' $ of length $ l $ is hinged at the point $ O $ and held in place vertically between two walls using two massless springs of the same spring constant. The springs are connected at the midpoint and at the top-end $ (O') $ of the rod, as shown in Fig. 1, and the rod is made to oscillate by a small angular displacement. The frequency of oscillation of the rod is $ f_1 $. On the other hand, if both the springs are connected at the midpoint of the rod, as shown in Fig. 2, and the rod is made to oscillate by a small angular displacement, then the frequency of oscillation is $ f_2 $. Ignoring gravity and assuming motion only in the plane of the diagram, the value of $\frac{f_1}{f_2}$ is: