Step 1: Apply Raoult's Law for an ideal solution.
For an ideal solution, the partial pressure of each component in the vapour phase is equal to the mole fraction of that component in the solution multiplied by the vapour pressure of the pure component.
\( p_A = x_A P_A^\circ \)
\( p_B = x_B P_B^\circ \)
where \( P_A^\circ = 350 \) mm Hg and \( P_B^\circ = 750 \) mm Hg are the vapour pressures of pure liquids A and B, respectively.
Step 2: Use Dalton's Law of partial pressures.
The total vapour pressure of the solution is \( P_{total} = p_A + p_B = x_A P_A^\circ + x_B P_B^\circ \).
We also know that \( x_A + x_B = 1 \), so \( x_B = 1 - x_A \).
\( P_{total} = x_A P_A^\circ + (1 - x_A) P_B^\circ = x_A P_A^\circ + P_B^\circ - x_A P_B^\circ = P_B^\circ + x_A (P_A^\circ - P_B^\circ) \)
Since \( P_A^\circ<P_B^\circ \), \( (P_A^\circ - P_B^\circ) \) is negative, so \( P_{total} \) will be between \( P_A^\circ \) and \( P_B^\circ \).
Step 3: Relate the mole fractions in the vapour phase to the partial pressures.
The mole fraction of each component in the vapour phase is given by the ratio of its partial pressure to the total pressure:
\( y_A = \frac{p_A}{P_{total}} = \frac{x_A P_A^\circ}{x_A P_A^\circ + x_B P_B^\circ} \)
\( y_B = \frac{p_B}{P_{total}} = \frac{x_B P_B^\circ}{x_A P_A^\circ + x_B P_B^\circ} \)
Step 4: Consider the ratio of mole fractions in the vapour phase and the solution.
We want to compare \( \frac{x_A}{x_B} \) with \( \frac{y_A}{y_B} \).
\[
\frac{y_A}{y_B} = \frac{\frac{x_A P_A^\circ}{x_A P_A^\circ + x_B P_B^\circ}}{\frac{x_B P_B^\circ}{x_A P_A^\circ + x_B P_B^\circ}} = \frac{x_A P_A^\circ}{x_B P_B^\circ} = \frac{x_A}{x_B} \cdot \frac{P_A^\circ}{P_B^\circ}
\]
Given \( P_A^\circ = 350 \) mm Hg and \( P_B^\circ = 750 \) mm Hg, we have \( \frac{P_A^\circ}{P_B^\circ} = \frac{350}{750} = \frac{7}{15} \).
So, \( \frac{y_A}{y_B} = \frac{x_A}{x_B} \cdot \frac{7}{15} \).
Since \( \frac{7}{15}<1 \), we can conclude that \( \frac{y_A}{y_B}<\frac{x_A}{x_B} \).
Alternatively, \( \frac{x_A}{x_B}>\frac{y_A}{y_B} \).
Step 5: Verify with a specific example.
Let \( x_A = 0.5 \) and \( x_B = 0.5 \).
Then \( y_A = \frac{0.5 \times 350}{0.5 \times 350 + 0.5 \times 750} = \frac{175}{175 + 375} = \frac{175}{550} = \frac{7}{22} \)
\( y_B = \frac{0.5 \times 750}{0.5 \times 350 + 0.5 \times 750} = \frac{375}{550} = \frac{15}{22} \)
\( \frac{x_A}{x_B} = \frac{0.5}{0.5} = 1 \)
\( \frac{y_A}{y_B} = \frac{7/22}{15/22} = \frac{7}{15} \)
Here, \( 1>\frac{7}{15} \), so \( \frac{x_A}{x_B}>\frac{y_A}{y_B} \).