Lines are coplanar if the vector joining a point on one to a point on the other, and the direction vectors, are coplanar. Points: \( \mathbf{a}_1 = (1, 1, -1) \), \( \mathbf{a}_2 = (4, -3, 2) \). Direction vectors: \( \mathbf{b}_1 = (2, -2, 1) \), \( \mathbf{b}_2 = (1, -2, 2) \).
Coplanarity condition:
\[
(\mathbf{a}_2 - \mathbf{a}_1) \cdot (\mathbf{b}_1 \times \mathbf{b}_2) = 0.
\]
\[
\mathbf{a}_2 - \mathbf{a}_1 = (4-1, -3-1, 2-(-1)) = (3, -4, 3).
\]
\[
\mathbf{b}_1 \times \mathbf{b}_2 = \begin{vmatrix}
\hat{i} & \hat{j} & \hat{k} \\
2 & -2 & 1 \\
1 & -2 & 2
\end{vmatrix} = \hat{i}(-4 - (-2)) - \hat{j}(4 - 1) + \hat{k}(-4 - (-2)) = (-2, -3, -2).
\]
\[
(3, -4, 3) \cdot (-2, -3, -2) = -6 + 12 - 6 = 0.
\]
Lines are coplanar. Plane equation: Normal is \( \mathbf{b}_1 \times \mathbf{b}_2 = (-2, -3, -2) \). Use point (1, 1, -1):
\[
-2(x - 1) - 3(y - 1) - 2(z - (-1)) = 0 \Rightarrow -2x + 2 - 3y + 3 - 2z - 2 = 0 \Rightarrow 2x + 3y + 2z = 3.
\]
Answer: \( 2x + 3y + 2z = 3 \).