Let equations be \(L_1: y = 2x + c_1\), \(L_2: y = -\frac{1}{2}x + c_2\).
Using concurrency with given lines, solve for \(c_1, c_2\).
Intercepts for \(L_1\): \(x\)-intercept \(-\frac{c_1}{2}\), \(y\)-intercept \(c_1\).
Intercepts for \(L_2\): \(x\)-intercept \(-2 c_2\), \(y\)-intercept \(c_2\).
Sum of absolute intercepts:
\[
|c_1| + \left|\frac{c_1}{2}\right| + |c_2| + |2 c_2| = 7.
\]