We have the limit:
\(\lim_{{y \to 0}} \frac{\sqrt{3 + y^3} - \sqrt{3}}{y^3}\)
To evaluate this limit, we can use the conjugate. Multiply the numerator and denominator by the conjugate of the numerator, which is \(\sqrt{3 + y^3} + \sqrt{3}\):
\(\lim_{{y \to 0}} \frac{\sqrt{3 + y^3} - \sqrt{3}}{y^3} \cdot \frac{\sqrt{3 + y^3} + \sqrt{3}}{\sqrt{3 + y^3} + \sqrt{3}}\)
\(\lim_{{y \to 0}} \frac{(3 + y^3) - 3}{y^3(\sqrt{3 + y^3} + \sqrt{3})}\)
\(\lim_{{y \to 0}} \frac{y^3}{y^3(\sqrt{3 + y^3} + \sqrt{3})}\)
Cancel out the \(y^3\) terms:
\(\lim_{{y \to 0}} \frac{1}{\sqrt{3 + y^3} + \sqrt{3}}\)
Now, substitute y = 0:
\(\frac{1}{\sqrt{3 + 0^3} + \sqrt{3}}\)
\(\frac{1}{\sqrt{3} + \sqrt{3}}\)
\(\frac{1}{2\sqrt{3}}\)
Therefore, the limit is \(\frac{1}{2\sqrt{3}}\).
Answer: \(\frac{1}{2\sqrt{3}}\)
We are given the limit:
\[ \lim_{{y \to 0}} \frac{\sqrt{3 + y^3} - \sqrt{3}}{y^3} \]
To evaluate this limit, we will multiply both the numerator and denominator by the conjugate of the numerator, which is \(\sqrt{3 + y^3} + \sqrt{3}\). This gives us:
\[ \lim_{{y \to 0}} \frac{\sqrt{3 + y^3} - \sqrt{3}}{y^3} \cdot \frac{\sqrt{3 + y^3} + \sqrt{3}}{\sqrt{3 + y^3} + \sqrt{3}} \]
Now, simplify the numerator:
\[ \lim_{{y \to 0}} \frac{(3 + y^3) - 3}{y^3(\sqrt{3 + y^3} + \sqrt{3})} \]
This simplifies to:
\[ \lim_{{y \to 0}} \frac{y^3}{y^3(\sqrt{3 + y^3} + \sqrt{3})} \]
Cancel out the \(y^3\) terms:
\[ \lim_{{y \to 0}} \frac{1}{\sqrt{3 + y^3} + \sqrt{3}} \]
Now, substitute \(y = 0\):
\[ \frac{1}{\sqrt{3 + 0^3} + \sqrt{3}} \]
This simplifies to:
\[ \frac{1}{\sqrt{3} + \sqrt{3}} = \frac{1}{2\sqrt{3}} \]
Thus, the limit is:
Answer: \(\frac{1}{2\sqrt{3}}\)
The foot of perpendicular from the origin $O$ to a plane $P$ which meets the co-ordinate axes at the points $A , B , C$ is $(2, a , 4), a \in N$ If the volume of the tetrahedron $OABC$ is 144 unit $^3$, then which of the following points is NOT on $P$ ?