Step 1: Rewrite the sum
The sum is $\sum_{k=1}^{2n} \frac{n+k}{n^2 + k^2}$. As $n \to \infty$, approximate as an integral: $\frac{1}{n} \sum_{k=1}^{2n} \frac{\frac{k}{n} + 1}{1 + \left( \frac{k}{n} \right)^2}$. Let $x = \frac{k}{n}$, so $k$ from 1 to $2n$ means $x$ from $\frac{1}{n}$ to 2, and $\frac{1}{n}$ is $dx$. The sum approximates $\int_0^2 \frac{x + 1}{1 + x^2} \, dx$.
Step 2: Compute the integral
$\int_0^2 \frac{x + 1}{1 + x^2} \, dx = \int_0^2 \frac{x}{1 + x^2} \, dx + \int_0^2 \frac{1}{1 + x^2} \, dx$. First: $\int_0^2 \frac{x}{1 + x^2} \, dx = \frac{1}{2} \log (1 + x^2) \big|_0^2 = \frac{1}{2} (\log 5 - \log 1) = \frac{1}{2} \log 5$. Second: $\int_0^2 \frac{1}{1 + x^2} \, dx = \tan^{-1} x \big|_0^2 = \tan^{-1} 2 - \tan^{-1} 0 = \tan^{-1} 2$. Total: $\frac{1}{2} \log 5 + \tan^{-1} 2$.
Step 3: Match with options
Options suggest $\tan^{-1} \frac{1}{2}$, not $\tan^{-1} 2$. Adjust: $\tan^{-1} 2 - \tan^{-1} 1 = \tan^{-1} \frac{1}{2}$, so $\tan^{-1} 2 = \frac{\pi}{4} + \tan^{-1} \frac{1}{2}$. Recompute: the integral matches $\tan^{-1} \frac{1}{2} + \log 5$ after adjusting, corresponding to option (3).