Step 1: Use Einstein's photoelectric equation.
\[
K_{max} = h\nu - \phi = \frac{hc}{\lambda} - \phi
\]
Step 2: Write given condition.
Initially,
\[
E = \frac{hc}{\lambda} - \phi
\]
Finally,
\[
2E = \frac{hc}{\lambda'} - \phi
\]
Step 3: Compare both equations.
\[
2\left(\frac{hc}{\lambda} - \phi\right) = \frac{hc}{\lambda'} - \phi
\]
\[
\Rightarrow \frac{2hc}{\lambda} - 2\phi = \frac{hc}{\lambda'} - \phi
\Rightarrow \frac{hc}{\lambda'} = \frac{2hc}{\lambda} - \phi
\]
Step 4: Conclude range of \(\lambda'\).
Since \(\phi>0\),
\[
\frac{hc}{\lambda'}<\frac{2hc}{\lambda}
\Rightarrow \lambda'>\frac{\lambda}{2}
\]
Also to increase energy, \(\lambda'\) must decrease compared to \(\lambda\):
\[
\lambda'<\lambda
\]
Thus,
\[
\frac{\lambda}{2}<\lambda'<\lambda
\]
Final Answer:
\[
\boxed{\dfrac{\lambda}{2}<\lambda'<\lambda}
\]