Given, $|ziw|=|z- \overline {iw|}| = 2$
$\Rightarrow \, \, \, \, |z-(-iw)|z-(\overline {iw|})=2$
$\Rightarrow \, \, \, \, |z-(-iw)|=|z-(-\overline {iw)|}$
$\therefore $ z lies on the perpendicular bisector of the line joining
- iw and $-\overline {iw|}$. Since,$-\overline {iw|}$ is the mirror image of - iw in
the X-axis, the locus of z is the X-axis.
Let z = x + i y and y = 0.
Now, $\, \, \, \, \, \, \, \, |z|\le 1 \, \Rightarrow \, \, x^2+0^2 \le 1\, \Rightarrow \, \, -1 \le \, x \, \le \, 1$
$\therefore $ 2 may take values given in option (c).
Alternate Solution
$\, \, \, \, \, \, \, \, \, \, \, \, |z+iw|\le |z|+|iw|$
$\, \, \, \, \, \, \, \, \, \, \, \, =|z|+|w|$
$\, \, \, \, \, \, \, \, \, \, \, \, \le 1+1=2$
$\therefore \, \, \, \, \, \, \, \, \, \, \, |z+iw|\le 2$
$\Rightarrow \, \, \, \, \, \, \, \, \, \, |z+iw|= 2$ holds when
$ \, \, \, \, \, \, \, \, \, $ arg z - arg iw = 0
$\Rightarrow \, \, \, \, arg\frac{z}{iw}=0$
$\Rightarrow \, \, \frac{z}{i w}$ is purely real.
$\Rightarrow \, \, \frac{z}{w}$ is purely imaginary.
Similarly, when $| z - i \overline{w}|=2 , \, then \frac{z}{\overline{w}}is$ purely
imaginary
Now, given relation
$|z+iw|=|z-i\overline{w}|=2$
Put w = t, we get
$ \, \, \, \, \, \, \, \, \, \, \, \, \, |z+i^2|=|z+i^2|=2$
$\Rightarrow \, \, \, \, \, \, \, |z-1|=1$
$\Rightarrow \, \, \, \, z=-1 \, \, \, \, \, [\because |z| \le 1]$
Put w = - i , we get
$\, \, \, \, \, \, \, \, \, \, \, |z-i^2|=|z-i^2|=1$
$\Rightarrow \, \, \, \, \, \, \, |z+1|=1$
$\Rightarrow \, \, \, \, z=1 \, \, \, \, \, [\because |z| \le 1]$
$\therefore $ 2 = 1 or - 1 is the correct option.