Given differential equation:
\[
\frac{dy}{dx}=e^{\alpha x+y}
\]
Rewrite:
\[
\frac{dy}{dx}=e^{\alpha x}e^{y}
\]
Separating variables,
\[
e^{-y}dy=e^{\alpha x}dx
\]
Integrating both sides,
\[
\int e^{-y}dy=\int e^{\alpha x}dx
\]
\[
-\,e^{-y}=\frac{1}{\alpha}e^{\alpha x}+C
\]
Using the condition $y(0)=\ln\frac12=-\ln2$:
\[
-\,e^{-(-\ln2)}=\frac{1}{\alpha}+C
\Rightarrow -2=\frac{1}{\alpha}+C
\]
\[
C=-2-\frac{1}{\alpha}
\]
Using the condition $y(\ln2)=\ln2$:
\[
-\,e^{-\ln2}=\frac{1}{\alpha}e^{\alpha\ln2}+C
\Rightarrow -\frac12=\frac{2^\alpha}{\alpha}+C
\]
Substitute $C$:
\[
-\frac12=\frac{2^\alpha}{\alpha}-2-\frac{1}{\alpha}
\]
\[
\frac{3}{2}=\frac{2^\alpha-1}{\alpha}
\Rightarrow 3\alpha=2(2^\alpha-1)
\]
Since $\alpha\in\mathbb{N}$, test values:
\[
\alpha=2:\quad 3(2)=2(4-1)=6 \quad \text{(satisfies)}
\]
\[
\boxed{\alpha=2}
\]